Patents by Inventor Satish Vangara

Satish Vangara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230291363
    Abstract: Circuits and methods for maintaining loop stability and good load regulation in low loop gain LDO regulator circuits. Embodiments encompass LDO regulator circuits that include an offset error correction circuit that generates an opposing voltage VOFFSET as a function of load current to substantially cancel out variations in VOUT that would otherwise occur due to load regulation limitations of the LDO regulator circuits. Embodiments use VOFFSET to imbalance currents in differential paths in a last-stage LDO error-amplifier so that an offset is propagated to a pair of inputs to the error-amplifier, thereby altering the output voltage VOUT to a corrected value. Benefits include improved LDO load regulation even when feedback loop gain is low, the available of both digital and analog implementations, high LDO accuracy and less variation of the output voltage VOUT, and suitability for implementation in integrated circuits for applications such as high precision power supplies.
    Type: Application
    Filed: March 15, 2023
    Publication date: September 14, 2023
    Inventor: Satish Vangara
  • Patent number: 11650609
    Abstract: Circuits and methods that provide for fast power up and power down times in a multi-stage LDO regulator. In one embodiment, a multi-stage LDO regulator circuit includes, for each stage for which fast power up and/or power down times are desired, at least one transconductance amplifier coupled and configured to compare a primary reference voltage to one of a secondary reference voltage for the stage or an output voltage of the stage, and coupling and configuring the at least one transconductance amplifier to charge and/or discharge an associated capacitor to achieve a desired charge level within a specified time independently of the value of the associated capacitor. In general, the transconductance amplifiers of each stage are configured to charge and/or discharge an associated capacitor in synchronism with a voltage present on the primary reference voltage input.
    Type: Grant
    Filed: July 12, 2022
    Date of Patent: May 16, 2023
    Assignee: pSemi Corporation
    Inventors: Carlos Zamarreno Ramos, Satish Vangara
  • Patent number: 11611316
    Abstract: Circuits and methods for maintaining loop stability and good load regulation in low loop gain LDO regulator circuits. Embodiments encompass LDO regulator circuits that include an offset error correction circuit that generates an opposing voltage VOFFSET as a function of load current to substantially cancel out variations in VOUT that would otherwise occur due to load regulation limitations of the LDO regulator circuits. Embodiments use VOFFSET to imbalance currents in differential paths in a last-stage LDO error-amplifier so that an offset is propagated to a pair of inputs to the error-amplifier, thereby altering the output voltage VOUT to a corrected value. Benefits include improved LDO load regulation even when feedback loop gain is low, the available of both digital and analog implementations, high LDO accuracy and less variation of the output voltage VOUT, and suitability for implementation in integrated circuits for applications such as high precision power supplies.
    Type: Grant
    Filed: October 29, 2020
    Date of Patent: March 21, 2023
    Assignee: pSemi Corporation
    Inventor: Satish Vangara
  • Publication number: 20230004178
    Abstract: Circuits and methods that provide for fast power up and power down times in a multi-stage LDO regulator. In one embodiment, a multi-stage LDO regulator circuit includes, for each stage for which fast power up and/or power down times are desired, at least one transconductance amplifier coupled and configured to compare a primary reference voltage to one of a secondary reference voltage for the stage or an output voltage of the stage, and coupling and configuring the at least one transconductance amplifier to charge and/or discharge an associated capacitor to achieve a desired charge level within a specified time independently of the value of the associated capacitor. In general, the transconductance amplifiers of each stage are configured to charge and/or discharge an associated capacitor in synchronism with a voltage present on the primary reference voltage input.
    Type: Application
    Filed: July 12, 2022
    Publication date: January 5, 2023
    Inventors: Carlos Zamarreno Ramos, Satish Vangara
  • Patent number: 11392154
    Abstract: Circuits and methods that provide for fast power up and power down times in a multi-stage LDO regulator. In one embodiment, a multi-stage LDO regulator circuit includes, for each stage for which fast power up and/or power down times are desired, at least one transconductance amplifier coupled and configured to compare a primary reference voltage to one of a secondary reference voltage for the stage or an output voltage of the stage, and coupling and configuring the at least one transconductance amplifier to charge and/or discharge an associated capacitor to achieve a desired charge level within a specified time independently of the value of the associated capacitor. In general, the transconductance amplifiers of each stage are configured to charge and/or discharge an associated capacitor in synchronism with a voltage present on the primary reference voltage input.
    Type: Grant
    Filed: August 24, 2020
    Date of Patent: July 19, 2022
    Assignee: pSemi Corporation
    Inventors: Carlos Zamarreno Ramos, Satish Vangara
  • Publication number: 20220140791
    Abstract: Circuits and methods for maintaining loop stability and good load regulation in low loop gain LDO regulator circuits. Embodiments encompass LDO regulator circuits that include an offset error correction circuit that generates an opposing voltage VOFFSET as a function of load current to substantially cancel out variations in VOUT that would otherwise occur due to load regulation limitations of the LDO regulator circuits. Embodiments use VOFFSET to imbalance currents in differential paths in a last-stage LDO error-amplifier so that an offset is propagated to a pair of inputs to the error-amplifier, thereby altering the output voltage VOUT to a corrected value. Benefits include improved LDO load regulation even when feedback loop gain is low, the available of both digital and analog implementations, high LDO accuracy and less variation of the output voltage VOUT, and suitability for implementation in integrated circuits for applications such as high precision power supplies.
    Type: Application
    Filed: October 29, 2020
    Publication date: May 5, 2022
    Inventor: Satish Vangara
  • Publication number: 20220057822
    Abstract: Circuits and methods that provide for fast power up and power down times in a multi-stage LDO regulator. In one embodiment, a multi-stage LDO regulator circuit includes, for each stage for which fast power up and/or power down times are desired, at least one transconductance amplifier coupled and configured to compare a primary reference voltage to one of a secondary reference voltage for the stage or an output voltage of the stage, and coupling and configuring the at least one transconductance amplifier to charge and/or discharge an associated capacitor to achieve a desired charge level within a specified time independently of the value of the associated capacitor. In general, the transconductance amplifiers of each stage are configured to charge and/or discharge an associated capacitor in synchronism with a voltage present on the primary reference voltage input.
    Type: Application
    Filed: August 24, 2020
    Publication date: February 24, 2022
    Inventors: Carlos Zamarreno Ramos, Satish Vangara