Patents by Inventor Satoko Kutsuzawa

Satoko Kutsuzawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7424226
    Abstract: An optical code division multiplexing communication method includes the steps of: producing a multi-wavelength optical pulse train from wavelength multiplexing pulse; transmitting the multi-wavelength optical pulse train through a transmission line using a time-spreading/wavelength-hopping method; decoding wavelength multiplexing pulse from the multi-wavelength optical pulse train transmitted through the transmission line; compensating delay time differences between individual optical pulses of the multi-wavelength optical pulse train, the delay time differences occurring in the step of transmitting the multi-wavelength optical pulse train through the transmission line; and compensating optical pulse spread in a time direction, which occurs in each of the optical pulses of the multi-wavelength optical pulse train in the step of transmitting the multi-wavelength optical pulse train through the transmission line.
    Type: Grant
    Filed: July 21, 2005
    Date of Patent: September 9, 2008
    Assignee: Oki Electric Industry Co., Ltd.
    Inventors: Akihiko Nishiki, Kensuke Sasaki, Shuko Kobayashi, Satoko Kutsuzawa
  • Patent number: 7333737
    Abstract: There is provided an optical receiver in which a time gate can be realized with a simple, low-cost configuration, and which has few aspects that require adjustment. The optical receiver of the present invention comprises a decoding circuit in which optical signals which are spread over time in accordance with a coding pattern are inputted and decoded in accordance with a decoding pattern; and a time gate circuit for generating a time gate signal that represents the interval of time in which a significant optical pulse is present in the decoded optical signal, and controlling the passage of the decoded optical signal.
    Type: Grant
    Filed: June 15, 2004
    Date of Patent: February 19, 2008
    Assignee: Oki Electric Industry Co., Ltd.
    Inventors: Naoki Minato, Satoko Kutsuzawa
  • Patent number: 7333729
    Abstract: To resolve problems, with the invention, an optical transmitter comprises an encoder for generating an optical signal obtained by encoding multi-wavelength pulses corresponding to sending data by use of a method of time spread/wavelength hopping in accordance with an encoding pattern of the encoder itself. The encoder concurrently executes time delay for every wavelength component at encoding, and time delay due to pre-compensation processing to pre-compensate for difference in propagation time for every wavelength component, occurring due to chromatic dispersion characteristics of a transmission line by ?%. An optical receiver comprises a decoder for decoding the optical signal transmitted by the optical transmitter in accordance with a decoding pattern of the decoder itself.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: February 19, 2008
    Assignee: Oki Electric Industry Co., Ltd.
    Inventors: Naoki Minato, Satoko Kutsuzawa, Saeko Oshiba
  • Patent number: 7324754
    Abstract: An object of the present invention is to adjust the operating wavelength of a decoder, in order to coordinate the operating characteristics of an encoder and the decoder. To this end, an optical code division multiplex transmission device of the present invention comprises a second SSFBG in the decoder, and has a mechanism to perform adjustment (phase adjustment step) of the fixation portion interval L which is the interval between a first and second fixation portions fixing in place the second SSFBG, such that the extent of the eye opening of optical pulses output from the second SSFBG is maximum. The extent of the eye opening is measured using a correlation waveform monitor, and the measurement data is sent to the wavelength control portion. A signal is sent from the wavelength control portion to the movement control portion to set the fixation portion interval L, based on data relating to the extent of the eye opening sent from the correlation waveform monitor.
    Type: Grant
    Filed: June 17, 2004
    Date of Patent: January 29, 2008
    Assignee: Oki Electric Industry Co., Ltd.
    Inventors: Shuko Kobayashi, Akihiko Nishiki, Satoko Kutsuzawa
  • Publication number: 20060039701
    Abstract: An optical code division multiplexing communication method includes the steps of: producing a multi-wavelength optical pulse train from wavelength multiplexing pulse; transmitting the multi-wavelength optical pulse train through a transmission line using a time-spreading/wavelength-hopping method; decoding wavelength multiplexing pulse from the multi-wavelength optical pulse train transmitted through the transmission line; compensating delay time differences between individual optical pulses of the multi-wavelength optical pulse train, the delay time differences occurring in the step of transmitting the multi-wavelength optical pulse train through the transmission line; and compensating optical pulse spread in a time direction, which occurs in each of the optical pulses of the multi-wavelength optical pulse train in the step of transmitting the multi-wavelength optical pulse train through the transmission line.
    Type: Application
    Filed: July 21, 2005
    Publication date: February 23, 2006
    Applicant: Oki Electric Industry Co., Ltd.
    Inventors: Akihiko Nishiki, Kensuke Sasaki, Shuko Kobayashi, Satoko Kutsuzawa
  • Publication number: 20040264965
    Abstract: An object of the present invention is to adjust the operating wavelength of a decoder, in order to coordinate the operating characteristics of an encoder and the decoder. To this end, an optical code division multiplex transmission device of the present invention comprises a second SSFBG in the decoder, and has a mechanism to perform adjustment (phase adjustment step) of the fixation portion interval L which is the interval between a first and second fixation portions fixing in place the second SSFBG, such that the extent of the eye opening of optical pulses output from the second SSFBG is maximum. The extent of the eye opening is measured using a correlation waveform monitor, and the measurement data is sent to the wavelength control portion. A signal is sent from the wavelength control portion to the movement control portion to set the fixation portion interval L, based on data relating to the extent of the eye opening sent from the correlation waveform monitor.
    Type: Application
    Filed: June 17, 2004
    Publication date: December 30, 2004
    Inventors: Shuko Kobayashi, Akihiko Nishiki, Satoko Kutsuzawa
  • Publication number: 20040253002
    Abstract: There is provided an optical receiver in which a time gate can be realized with a simple, low-cost configuration, and which has few aspects that require adjustment. The optical receiver of the present invention comprises a decoding circuit in which optical signals which are spread over time in accordance with a coding pattern are inputted and decoded in accordance with a decoding pattern; and a time gate circuit for generating a time gate signal that represents the interval of time in which a significant optical pulse is present in the decoded optical signal, and controlling the passage of the decoded optical signal.
    Type: Application
    Filed: June 15, 2004
    Publication date: December 16, 2004
    Inventors: Naoki Minato, Satoko Kutsuzawa
  • Publication number: 20040062555
    Abstract: To resolve problems, with the invention, an optical transmitter comprises an encoder for generating an optical signal obtained by encoding multi-wavelength pulses corresponding to sending data by use of a method of time spread/wavelength hopping in accordance with an encoding pattern of the encoder itself. The encoder concurrently executes time delay for every wavelength component at encoding, and time delay due to pre-compensation processing to pre-compensate for difference in propagation time for every wavelength component, occurring due to chromatic dispersion characteristics of a transmission line by &agr;%. An optical receiver comprises a decoder for decoding the optical signal transmitted by the optical transmitter in accordance with a decoding pattern of the decoder itself.
    Type: Application
    Filed: September 30, 2003
    Publication date: April 1, 2004
    Applicant: Oki Electric Industry Co., Ltd.
    Inventors: Naoki Minato, Satoko Kutsuzawa, Saeko Oshiba