Patents by Inventor Satoru Ideguchi

Satoru Ideguchi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11761108
    Abstract: A mask for partial plating capable of performing partial electroplating selectively on a prescribed portion on a surface of an electrically isolated metal member provided on an insulated board is provided. Methods for producing an insulated circuit board and using the mask for partial plating are also provided. The mask for partial plating includes an insulated sheet member having an opening corresponding to the portion to be plated, and a structure including a partial region on one surface in the thickness direction of the insulated sheet member being coated with one or plural conductive sheet members attached to the region. The conductive sheet member is adhered to the surface of the insulated sheet member, for example, with an adhesive or an adhesive member. The conductive sheet member may be engaged in a recessed portion formed on the surface of the insulated sheet member.
    Type: Grant
    Filed: October 27, 2021
    Date of Patent: September 19, 2023
    Assignee: DOWA METALTECH CO., LTD.
    Inventors: Masaaki Higo, Satoru Ideguchi
  • Publication number: 20220136126
    Abstract: A mask for partial plating capable of performing partial electroplating selectively on a prescribed portion on a surface of an electrically isolated metal member provided on an insulated board is provided. Methods for producing an insulated circuit board and using the mask for partial plating are also provided. The mask for partial plating includes an insulated sheet member having an opening corresponding to the portion to be plated, and a structure including a partial region on one surface in the thickness direction of the insulated sheet member being coated with one or plural conductive sheet members attached to the region. The conductive sheet member is adhered to the surface of the insulated sheet member, for example, with an adhesive or an adhesive member. The conductive sheet member may be engaged in a recessed portion formed on the surface of the insulated sheet member.
    Type: Application
    Filed: October 27, 2021
    Publication date: May 5, 2022
    Inventors: Masaaki Higo, Satoru Ideguchi
  • Patent number: 11162745
    Abstract: A heat radiating plate 10 of a metal material includes a flat plate portion 10a, a large number of columnar protruding portions 10b which protrude from one major surface of the flat plate portion and which are integrated with the flat plate portion, and a reinforcing plate member 12 of a material, which has a higher melting point than that of the flat plate portion and columnar protruding portions and which is arranged in a region, which is arranged in the flat plate portion and which is close to one major surface of the flat plate portion, the reinforcing member passing through the flat plate portion to extend in directions substantially parallel to the one major surface of the flat plate portion and having end faces exposed to the outside, the whole surface of the reinforcing member except for the end faces being bonded directly to the flat plate portion.
    Type: Grant
    Filed: October 29, 2019
    Date of Patent: November 2, 2021
    Assignee: DOWA METALTECH CO., LTD.
    Inventors: Satoru Ideguchi, Hideyo Osanai, Hirotaka Kotani
  • Patent number: 10619948
    Abstract: A heat radiating plate 10 of a metal material includes a flat plate portion 10a, a large number of columnar protruding portions 10b which protrude from one major surface of the flat plate portion and which are integrated with the flat plate portion, and a reinforcing plate member 12 of a material, which has a higher melting point than that of the flat plate portion and columnar protruding portions and which is arranged in a region, which is arranged in the flat plate portion and which is close to one major surface of the flat plate portion, the reinforcing member passing through the flat plate portion to extend in directions substantially parallel to the one major surface of the flat plate portion and having end faces exposed to the outside, the whole surface of the reinforcing member except for the end faces being bonded directly to the flat plate portion.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: April 14, 2020
    Assignee: DOWA METALTECH CO., LTD.
    Inventors: Satoru Ideguchi, Hideyo Osanai, Hirotaka Kotani
  • Publication number: 20200064087
    Abstract: A heat radiating plate 10 of a metal material includes a flat plate portion 10a, a large number of columnar protruding portions 10b which protrude from one major surface of the flat plate portion and which are integrated with the flat plate portion, and a reinforcing plate member 12 of a material, which has a higher melting point than that of the flat plate portion and columnar protruding portions and which is arranged in a region, which is arranged in the flat plate portion and which is close to one major surface of the flat plate portion, the reinforcing member passing through the flat plate portion to extend in directions substantially parallel to the one major surface of the flat plate portion and having end faces exposed to the outside, the whole surface of the reinforcing member except for the end faces being bonded directly to the flat plate portion.
    Type: Application
    Filed: October 29, 2019
    Publication date: February 27, 2020
    Applicant: DOWA METALTECH CO., LTD.
    Inventors: Satoru Ideguchi, Hideyo Osanai, Hirotaka Kotani
  • Patent number: 9713253
    Abstract: A metal/ceramic bonding substrate includes: a ceramic substrate; a metal plate bonded directly to one side of the ceramic substrate; a metal base plate bonded directly to the other side of the ceramic substrate; and a reinforcing member having a higher strength than that of the metal base plate, the reinforcing member being arranged so as to extend from one of both end faces of the metal base plate to the other end face thereof without interrupting that the metal base plate extends between a bonded surface of the metal base plate to the ceramic substrate and the opposite surface thereof.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: July 18, 2017
    Assignee: DOWA METALTECH CO., LTD.
    Inventors: Hideyo Osanai, Takayuki Takahashi, Satoru Ideguchi, Hirotaka Kotani
  • Publication number: 20140083671
    Abstract: A heat radiating plate 10 of a metal material includes a flat plate portion 10a, a large number of columnar protruding portions 10b which protrude from one major surface of the flat plate portion and which are integrated with the flat plate portion, and a reinforcing plate member 12 of a material, which has a higher melting point than that of the flat plate portion and columnar protruding portions and which is arranged in a region, which is arranged in the flat plate portion and which is close to one major surface of the flat plate portion, the reinforcing member passing through the flat plate portion to extend in directions substantially parallel to the one major surface of the flat plate portion and having end faces exposed to the outside, the whole surface of the reinforcing member except for the end faces being bonded directly to the flat plate portion.
    Type: Application
    Filed: September 25, 2013
    Publication date: March 27, 2014
    Applicant: DOWA METALTECH CO., LTD.
    Inventors: Satoru Ideguchi, Hideyo Osanai, Hirotaka Kotani
  • Publication number: 20140057131
    Abstract: A metal/ceramic bonding substrate includes: a ceramic substrate; a metal plate bonded directly to one side of the ceramic substrate; a metal base plate bonded directly to the other side of the ceramic substrate; and a reinforcing member having a higher strength than that of the metal base plate, the reinforcing member being arranged so as to extend from one of both end faces of the metal base plate to the other end face thereof without interrupting that the metal base plate extends between a bonded surface of the metal base plate to the ceramic substrate and the opposite surface thereof.
    Type: Application
    Filed: March 29, 2011
    Publication date: February 27, 2014
    Applicant: DOWA METALTECH CO., LTD.
    Inventors: Hideyo Osanai, Takayuki Takahashi, Satoru Ideguchi, Hirotaka Kotani
  • Patent number: 7393596
    Abstract: When an aluminum plate is bonded directly to a ceramic substrate by cooling and solidifying molten aluminum which is injected into a mold so as to contact the ceramic substrate arranged in the mold, an additive, such as a TiB alloy, Ca or Sr, for decreasing the grain size of the aluminum plate to 10 mm or less while preventing the drop in thermal conductivity of the aluminum plate from the thermal conductivity of a pure aluminum plate from exceeding 20% of the thermal conductivity of the pure aluminum plate is added to the molten aluminum. When an aluminum alloy plate of an aluminum-silicon alloy is bonded directly to a ceramic substrate by cooling and solidifying a molten aluminum-silicon alloy which is injected into a mold so as to contact the ceramic substrate arranged in the mold, an aluminum-silicon alloy containing 0.1 to 1.5 wt % of silicon and 0.03 to 0.10 wt % of boron is injected into the mold.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: July 1, 2008
    Assignee: Dowa Mining Co., Ltd.
    Inventors: Hideyo Osanai, Satoru Ideguchi
  • Patent number: 7255931
    Abstract: When an aluminum plate is bonded directly to a ceramic substrate by cooling and solidifying molten aluminum which is injected into a mold so as to contact the ceramic substrate arranged in the mold, an additive, such as a TiB alloy, Ca or Sr, for decreasing the grain size of the aluminum plate to 10 mm or less while preventing the drop in thermal conductivity of the aluminum plate from the thermal conductivity of a pure aluminum plate from exceeding 20% of the thermal conductivity of the pure aluminum plate is added to the molten aluminum. When an aluminum alloy plate of an aluminum-silicon alloy is bonded directly to a ceramic substrate by cooling and solidifying a molten aluminum-silicon alloy which is injected into a mold so as to contact the ceramic substrate arranged in the mold, an aluminum-silicon alloy containing 0.1 to 1.5 wt % of silicon and 0.03 to 0.10 wt % of boron is injected into the mold.
    Type: Grant
    Filed: September 29, 2004
    Date of Patent: August 14, 2007
    Assignee: Dowa Mining Co., Ltd.
    Inventors: Hideyo Osanai, Satoru Ideguchi
  • Publication number: 20070042215
    Abstract: When an aluminum plate is bonded directly to a ceramic substrate by cooling and solidifying molten aluminum which is injected into a mold so as to contact the ceramic substrate arranged in the mold, an additive, such as a TiB alloy, Ca or Sr, for decreasing the grain size of the aluminum plate to 10 mm or less while preventing the drop in thermal conductivity of the aluminum plate from the thermal conductivity of a pure aluminum plate from exceeding 20% of the thermal conductivity of the pure aluminum plate is added to the molten aluminum. When an aluminum alloy plate of an aluminum-silicon alloy is bonded directly to a ceramic substrate by cooling and solidifying a molten aluminum-silicon alloy which is injected into a mold so as to contact the ceramic substrate arranged in the mold, an aluminum-silicon alloy containing 0.1 to 1.5 wt % of silicon and 0.03 to 0.10 wt % of boron is injected into the mold.
    Type: Application
    Filed: September 22, 2006
    Publication date: February 22, 2007
    Inventors: Hideyo Osanai, Satoru Ideguchi
  • Publication number: 20050072547
    Abstract: When an aluminum plate is bonded directly to a ceramic substrate by cooling and solidifying molten aluminum which is injected into a mold so as to contact the ceramic substrate arranged in the mold, an additive, such as a TiB alloy, Ca or Sr, for decreasing the grain size of the aluminum plate to 10 mm or less while preventing the drop in thermal conductivity of the aluminum plate from the thermal conductivity of a pure aluminum plate from exceeding 20% of the thermal conductivity of the pure aluminum plate is added to the molten aluminum. When an aluminum alloy plate of an aluminum-silicon alloy is bonded directly to a ceramic substrate by cooling and solidifying a molten aluminum-silicon alloy which is injected into a mold so as to contact the ceramic substrate arranged in the mold, an aluminum-silicon alloy containing 0.1 to 1.5 wt % of silicon and 0.03 to 0.10 wt % of boron is injected into the mold.
    Type: Application
    Filed: September 29, 2004
    Publication date: April 7, 2005
    Inventors: Hideyo Osanai, Satoru Ideguchi