Patents by Inventor Satoru Ishibashi

Satoru Ishibashi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8207949
    Abstract: A highly durable touch panel is provided. A touch panel according to the present invention includes a deformable flexible panel, and a transparent electrode film containing In2O3 as a primary component and containing Ti is exposed to a surface of a lower electrode film of a display device. Since such a transparent electrode film has a high abrasion resistance as compared to a conventional one (such as, an ITO thin film), the transparent electrode film is neither clouded nor cracked even if the lower electrode film is repeatedly pressed. Therefore, the touch panel according to the present invention is highly durable.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: June 26, 2012
    Assignee: Ulvac, Inc.
    Inventors: Hirohisa Takahashi, Satoru Takasawa, Isao Sugiura, Atsushi Ota, Satoru Ishibashi, Haruhiko Yamamoto
  • Publication number: 20120119269
    Abstract: A technique is provided which prevents an increase in the resistivity of a conductive wiring film. A conductive layer containing Ca in a content rate of 0.3 atom % or more is provided on the surfaces of each of conductive wiring films which are to be exposed to a gas containing a Si atom in a chemical structure at a high temperature. When a gate insulating layer or a protection film containing Si is formed on the surface of the conductive layer, the Si atoms do not diffuse into the conductive layer and a resistance value does not increase, even if the conductive layer is exposed to the raw material gas containing Si in a chemical structure . Further, a CuCaO layer can be formed as an adhesive layer for preventing Si diffusion from a glass substrate or a silicon semiconductor.
    Type: Application
    Filed: December 2, 2011
    Publication date: May 17, 2012
    Applicant: ULVAC, INC.
    Inventors: Satoru TAKASAWA, Masanori Shirai, Satoru Ishibashi, Tadashi Masuda, Yasuo Nakadai
  • Publication number: 20120097534
    Abstract: A magnetron sputtering cathode includes: a yoke; a magnetic circuit having a central magnet portion, a peripheral edge magnet portion, an auxiliary magnet portion, and a parallel area; and a backing plate. The central magnet portion, the peripheral edge magnet portion, and the auxiliary magnet portion are disposed so that polarities of tip portions of the central magnet portion, the peripheral edge magnet portion, and the auxiliary magnet portion are different from each other at portions between adjacent magnet portions. The magnetic field profile observed from above of the backing plate and the magnetic flux density in a horizontal direction are determined so that the magnetic flux density in a first area is a positive value and the magnetic flux density in a second area is a negative value with respect to a position corresponding to the central magnet portion as a boundary.
    Type: Application
    Filed: August 28, 2009
    Publication date: April 26, 2012
    Applicant: ULVAC, INC.
    Inventors: Hirohisa Takahashi, Shinya Yamada, Satoru Ishibashi, Kouhei Sakuma
  • Patent number: 8154531
    Abstract: A touch panel having high durability is provided. Either one or both of a display device and a flexible panel have island-shaped protective bodies formed on surfaces of electrode layers (upper electrode layer, lower electrode layer), and a transparent conductive film is exposed between the protective bodies. Since the protective bodies protrude highly from the surface of the transparent conductive film, when the flexible panel is pressed and the upper electrode and the lower electrode layer are brought into contact, a load to be applied to the transparent conductive film is reduced by the protective bodies, so that the transparent conductive film is not broken.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: April 10, 2012
    Assignee: ULVAC, Inc.
    Inventors: Hirohisa Takahashi, Satoru Ishibashi, Noriaki Tani, Sadayuki Ukishima, Satoru Takasawa, Kyuzo Nakamura, Haruhiko Yamamoto
  • Patent number: 8147657
    Abstract: A sputtering apparatus according to the present invention is provided with first to fourth targets. The first and the second targets are disposed so that their surfaces face each other. The third and the fourth targets are also disposed so that their surfaces face each other. When a dielectric film is formed, sputtering is alternately performed on the first and the second targets and on the third and the fourth targets. When sputtering is performed on two of the targets having surfaces that face each other, the remaining two targets function as a ground. As a result, abnormal discharges are inhibited.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: April 3, 2012
    Assignee: Ulvac, Inc.
    Inventors: Satoru Takasawa, Sadayuki Ukishima, Noriaki Tani, Satoru Ishibashi
  • Publication number: 20120055788
    Abstract: A transparent electroconductive film having a low resistivity is provided. In a film-forming method of the present invention, a transparent electroconductive film is formed on a surface of a substrate by sputtering, in a vacuum atmosphere, a target in which ZnO is a main component and Al2O3 and TiO2 are added to ZnO, and then the transparent electroconductive film is annealed by the heating thereof at a temperature of 250° C. or more and 400° C. or less. The resistivity of the obtained transparent electroconductive film is reduced because the film has ZnO as the main component and Al and Ti added therein. The transparent electroconductive film formed by the present invention is suitable as a transparent electrode for the FDP, etc.
    Type: Application
    Filed: November 16, 2011
    Publication date: March 8, 2012
    Applicant: ULVAC, Inc.
    Inventors: Hirohisa TAKAHASHI, Sadayuki Ukishima, Atsushi Ota, Noriaki Tani, Satoru Ishibashi
  • Patent number: 8119462
    Abstract: A conductive film having high adhesion and low specific resistance is formed. A target containing copper as a main component is sputtered in vacuum ambience while an oxygen gas introduced, and then, a conductive film containing copper as a main component and additive metals, such as Ti or Zr, is formed. Such a conductive film has high adhesion to a silicon layer and a glass substrate and is hardly peeled off from the substrate. Furthermore, the specific resistance is low and the contact resistance to a transparent conductive film is also low. Thus, no deterioration in the electric characteristics occurs even when the conductive film is used for an electrode film. Accordingly, the conductive film formed by the present invention suited for TFT, and electrode films and barrier films of semiconductor elements, in particular.
    Type: Grant
    Filed: February 3, 2009
    Date of Patent: February 21, 2012
    Assignee: Ulvac, Inc.
    Inventors: Satoru Takasawa, Masaki Takei, Hirohisa Takahashi, Hiroaki Katagiri, Sadayuki Ukishima, Noriaki Tani, Satoru Ishibashi, Tadashi Masuda
  • Publication number: 20110298738
    Abstract: A touch panel having high durability is provided. Either one or both of a display device and a flexible panel have island-shaped protective bodies formed on surfaces of electrode layers (upper electrode layer, lower electrode layer), and a transparent conductive film is exposed between the protective bodies. Since the protective bodies protrude highly from the surface of the transparent conductive film, when the flexible panel is pressed and the upper electrode and the lower electrode layer are brought into contact, a load to be applied to the transparent conductive film is reduced by the protective bodies, so that the transparent conductive film is not broken.
    Type: Application
    Filed: July 28, 2011
    Publication date: December 8, 2011
    Applicant: ULVAC, INC.
    Inventors: Hirohisa Takahashi, Satoru Ishibashi, Noriaki Tani, Sadayuki Ukishima, Satoru Takasawa, Kyuzo Nakamura, Haruhiko Yamamoto
  • Publication number: 20110272021
    Abstract: A manufacturing method of a solar cell including a transparent conductive film formed on a transparent substrate includes the steps of: preparing a target, the target including ZnO and a material including a substance including an Al or a Ga, the ZnO being a primary component of the target; in a first atmosphere including a process gas, applying a sputter electric voltage to the target and forming a first layer included in the transparent conductive film; in a second atmosphere including a greater amount of an oxygen gas compared to the first atmosphere, applying a sputter electric voltage to the target and forming a second layer on the first layer, the second layer being included in the transparent conductive film; and forming an irregular shape by performing an etching process on the transparent conductive film.
    Type: Application
    Filed: January 21, 2010
    Publication date: November 10, 2011
    Applicant: ULVAC, INC.
    Inventors: Hirohisa Takahashi, Satoru Ishibashi, Tatsumi Usami, Masanori Shirai, Michio Akiyama
  • Publication number: 20110256659
    Abstract: A solar cell manufacturing method according to the present invention is a solar cell manufacturing method that forms a transparent conductive film of ZnO as an electric power extracting electrode on a light incident side, the method comprises at least in a following order: a process A forming the transparent conductive film on a substrate by applying a sputtering voltage to sputter a target made of a film formation material for the transparent conductive film; a process B forming a texture on a surface of the transparent conductive film; a process C cleaning the surface of the transparent conductive film on which the texture has been formed using an UV/ozone; and a process D forming an electric power generation layer on the transparent conductive film.
    Type: Application
    Filed: October 27, 2009
    Publication date: October 20, 2011
    Applicant: ULVAC, INC.
    Inventors: Hirohisa Takahashi, Satoru Ishibashi, Sadayuki Ukishima, Masahide Matsubara, Satoshi Okabe
  • Patent number: 8031183
    Abstract: A touch panel having high durability is provided. Either one or both of a display device and a flexible panel have island-shaped protective bodies formed on surfaces of electrode layers (upper electrode layer, lower electrode layer), and a transparent conductive film is exposed between the protective bodies. Since the protective bodies protrude highly from the surface of the transparent conductive film, when the flexible panel is pressed and the upper electrode and the lower electrode layer are brought into contact, a load to be applied to the transparent conductive film is reduced by the protective bodies, so that the transparent conductive film is not broken.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: October 4, 2011
    Assignee: Ulvac, Inc.
    Inventors: Hirohisa Takahashi, Satoru Ishibashi, Noriaki Tani, Sadayuki Ukishima, Satoru Takasawa, Kyuzo Nakamura, Haruhiko Yamamoto
  • Publication number: 20110233550
    Abstract: Provided is a metallic wiring film which is not peeled away even when exposed to a hydrogen plasma. A metallic wiring film is constituted by an adhesion layer containing copper, Ca, and oxygen and a low-resistance metal layer (a layer of a copper alloy or pure copper) having a lower resistance than the adhesion layer. When the adhesion layer is composed of a copper alloy, which contains Ca and oxygen, and a source electrode film and a drain electrode film adhering to an ohmic contact layer are constituted by the adhesion layer, even if the adhesion layer is exposed to the hydrogen plasma, a Cu-containing oxide formed at an interface between the adhesion layer and the ohmic contact layer is not reduced, so that no peeling occurs between the adhesion layer and a silicon layer.
    Type: Application
    Filed: April 21, 2011
    Publication date: September 29, 2011
    Applicants: MITSUBISHI MATERIALS CORPORATION, ULVAC, Inc.
    Inventors: Satoru Takasawa, Satoru Ishibashi, Tadashi Masuda
  • Publication number: 20110198213
    Abstract: [Object] To provide a sputtering apparatus, a thin-film forming method, and a manufacturing method for a field effect transistor, which are capable of reducing damage of a base layer. [Solving Means] The sputtering apparatus according to the present invention sputters target portions Tc1 to Tc5, which are arranged in an inside of a vacuum chamber, along the arrangement direction thereof in sequence, to thereby form a thin-film on a surface of a substrate 10. With this, rate at which sputtered particles enter the surface of the substrate in a direction oblique to the surface of the substrate is increased, and hence it is possible to achieve a reduction of the damage of the base layer.
    Type: Application
    Filed: October 9, 2009
    Publication date: August 18, 2011
    Applicant: ULVAC, INC.
    Inventors: Takaomi Kurata, Junya Kiyota, Makoto Arai, Yasuhiko Akamatsu, Satoru Ishibashi, Kazuya Saito
  • Publication number: 20110201150
    Abstract: [Object] To provide a sputtering apparatus, a thin-film forming method, and a manufacturing method for a field effect transistor, which are capable of reducing damage of a base layer. [Solving Means] The sputtering apparatus 100 includes a conveying mechanism, a first target Tc1, a second target (Tc2 to Tc5), and a sputtering means. The conveying mechanism conveys a supporting portion, which is arranged in an inside of a vacuum chamber and supports a substrate, linearly along a conveying surface parallel to the surface to be processed of the substrate. The first target Tc1 is opposed to the conveying surface with a first space therebetween. The second target (Tc2 to Tc5) is arranged on a downstream side in a conveying direction of the substrate with respect to the first target Tc1, and is opposed to the conveying surface with a second space smaller than the first space therebetween. The sputtering means sputters each target.
    Type: Application
    Filed: October 9, 2009
    Publication date: August 18, 2011
    Applicant: ULVAC, INC.
    Inventors: Takaomi Kurata, Junya Kiyota, Makoto Arai, Yasuhiko Akamatsu, Satoru Ishibashi, Kazuya Saito
  • Patent number: 7999907
    Abstract: Exfoliation of an etching stopper is prevented. A color filter of the present invention includes an inorganic protection film (etching stopper) composed mainly of SnO2. Since the inorganic protection film as such not only has a high specific resistance but also has a linear expansion coefficient close to the linear expansion coefficient of a transparent electrode, the inorganic protection film is not exfoliated from the transparent electrode or the resin layer even if an object to be processed is heated. Since the inorganic protection film and the transparent electrode can be formed in the same film forming chamber, the time required to produce the color filter can be shortened as compared to in the conventional technique.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: August 16, 2011
    Assignee: Ulvac, Inc.
    Inventors: Hirohisa Takahashi, Isao Sugiura, Atsushi Ohta, Satoru Ishibashi
  • Publication number: 20110195562
    Abstract: [Object] To provide a sputtering apparatus, a thin-film forming method, and a manufacturing method for a field effect transistor, which are capable of reducing damage of a base layer. [Solving Means] A sputtering apparatus according to an embodiment of the present invention is a sputtering apparatus for forming a thin-film on a surface to be processed of a substrate 10, and includes a vacuum chamber 61, a supporting portion 93, a target 80, and a magnet 83. The magnet 83 generates plasma forming a region to be sputtered 80a, and moves the region to be sputtered 80abetween a first position in which the region to be sputtered 80a is not opposed to the surface to be processed and a second position in which the region to be sputtered is opposed to the surface to be processed. With this, it is possible to weaken incident energy of sputtered particles incident on the surface to be processed of the substrate 10 from the region to be sputtered 80a, and to protect the base layer.
    Type: Application
    Filed: October 14, 2009
    Publication date: August 11, 2011
    Applicant: ULVAC, INC.
    Inventors: Takaomi Kurata, Junya Kiyota, Makoto Arai, Yasuhiko Akamatsu, Satoru Ishibashi, Kazuya Saito
  • Publication number: 20110194181
    Abstract: A film forming method for an antireflection film that has a first indium oxide-based thin film and a second indium oxide-based thin film that is laminated on the first indium oxide-based thin film, including a first film forming step that forms the first indium oxide-based thin film by performing sputtering using a first indium oxide-based target in a first reactive gas that contains one, two, or three types selected from a group consisting of oxygen gas, hydrogen gas, and water vapor; and a second film forming step that forms on the first indium oxide-based thin film the second indium oxide-based thin film by performing sputtering using a second indium oxide-based target in a second reactive gas that contains one, two, or three types selected from a group consisting of oxygen gas, hydrogen gas, and water vapor, and that has a different composition from the first reactive gas.
    Type: Application
    Filed: October 14, 2009
    Publication date: August 11, 2011
    Applicant: ULVAC, Inc.
    Inventors: Hirohisa Takahashi, Satoru Ishibashi, Haruhiko Yamamoto, Hidenori Yanagitsubo
  • Publication number: 20110189817
    Abstract: A manufacturing method for a solar cell including an upper electrode extracting an electrode at an incident light side, the upper electrode including a transparent conductive film, a basic structural element of the transparent conductive film being any one of an indium (In), a zinc (Zn), and tin (Sn), the manufacturing method including: a step A forming a texture on a front surface of a transparent substrate using a wet etching method, the transparent conductive film being formed on the transparent substrate, wherein in the step A, when the texture is formed, a metal thin film is formed on the transparent substrate, and an anisotropic etching is performed with the metal thin film being a mask.
    Type: Application
    Filed: October 15, 2009
    Publication date: August 4, 2011
    Applicant: ULVAC, INC.
    Inventors: Hirohisa Takahashi, Satoru Ishibashi, Kyuzo Nakamura
  • Publication number: 20110180402
    Abstract: To provide a vacuum processing apparatus capable of supporting and conveying a substrate by a method suitable for a processing content in each processing step and capable of suppressing various mechanisms provided within a processing chamber from being adversely affected. More particularly, the CVD chamber of the apparatus is configured to be horizontal, and hence the above-mentioned problem can be solved. Further, by configuring a sputtering apparatus as the vertical type processing apparatus, problems with abnormal electrical discharge can be solved.
    Type: Application
    Filed: October 7, 2009
    Publication date: July 28, 2011
    Applicant: ULVAC, INC.
    Inventors: Takaomi Kurata, Junya Kiyota, Makoto Arai, Yasuhiko Akamatsu, Satoru Ishibashi, Shin Asari, Kazuya Saito, Shigemitsu Sato, Masashi Kikuchi
  • Publication number: 20110108114
    Abstract: This solar cell has: a light transmissive first electrode; a photoelectric conversion layer formed of silicon; a light transmissive buffer layer; and a second electrode formed of a light reflective alloy. The second electrode is formed of a silver alloy including silver (Ag) as a main component with at least one of tin (Sn) and gold (Au) contained therein.
    Type: Application
    Filed: June 11, 2009
    Publication date: May 12, 2011
    Applicant: ULVAC, INC.
    Inventors: Yusuke Mizuno, Hirohisa Takahashi, Sadayuki Ukishima, Takashi Komatsu, Satoru Ishibashi