Patents by Inventor Satoru Ishino

Satoru Ishino has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240039505
    Abstract: A piezoelectric resonator device according to one or more embodiments may be provided, in which a crystal resonator plate includes a cutout part between a vibrating part and an external frame part, and a metal film formed on a first main surface of a first sealing member is electrically connected to an external electrode terminal formed on a second main surface, which does not face an internal space, of a second sealing member via a first internal wiring formed on an inner wall surface of the external frame part.
    Type: Application
    Filed: December 13, 2021
    Publication date: February 1, 2024
    Applicant: DAISHINKU CORPORATION
    Inventors: Satoru ISHINO, Hiroaki YAMASHITA
  • Patent number: 11515857
    Abstract: A third through hole is formed in a crystal resonator plate of a crystal resonator to penetrate between a first main surface and a second main surface. A through electrode of the third through hole is conducted to a first excitation electrode. A seventh through hole is formed in a first sealing member of the crystal resonator to penetrate between a first main surface and a second main surface. The through electrode of the third through hole is conducted to the through electrode of the seventh through hole. The third through hole is not superimposed to the seventh through hole in plan view.
    Type: Grant
    Filed: January 6, 2016
    Date of Patent: November 29, 2022
    Assignee: Daishinku Corporation
    Inventors: Takuya Kojo, Satoru Ishino
  • Patent number: 11411550
    Abstract: In a crystal oscillator accordance to an embodiment, a crystal resonator plate is bonded to, via laminated bonding patterns, a first sealing member covering a first excitation electrode of the crystal resonator plate; and a second sealing member covering a second excitation electrode of the crystal resonator plate. An internal space is formed, which hermetically seals a vibrating part including the first and second excitation electrodes of the crystal resonator plate. The laminated bonding patterns include a laminated sealing pattern annularly formed to surround the vibrating part in plan view so as to hermetically seal the internal space, and a laminated conductive pattern establishing conduction between wiring and electrodes. The laminated conductive pattern is disposed within a closed space surrounded by the laminated sealing pattern. To the laminated sealing pattern, GND potential is applied when the crystal oscillator operates.
    Type: Grant
    Filed: October 29, 2019
    Date of Patent: August 9, 2022
    Assignee: DAISHINKU CORPORATION
    Inventors: Satoru Ishino, Takuya Kojo
  • Patent number: 11362641
    Abstract: In a piezoelectric resonator device according to an embodiment, an internal space is formed by bonding a first sealing member to a crystal resonator plate and bonding a second sealing member to the crystal resonator plate. The internal space hermetically seals a vibrating part including a first excitation electrode and a second excitation electrode of the crystal resonator plate. Seal paths that hermetically seal the vibrating part of the crystal resonator plate are formed to have an annular shape in plan view. A plurality of external electrode terminals is formed on a second main surface of the second sealing member to be electrically connected to an external circuit board. The external electrode terminals are respectively disposed on and along an external frame part surrounding the internal space in plan view.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: June 14, 2022
    Assignee: DAISHINKU CORPORATION
    Inventors: Satoru Ishino, Yuka Kojo
  • Publication number: 20220077841
    Abstract: In a piezoelectric resonator device according to one or more embodiments, an internal space for hermetically sealing a vibrating part including a first excitation electrode and a second excitation electrode of a crystal resonator plate is formed by bonding a first sealing member and a second sealing member respectively to the crystal resonator plate. A through hole is formed in the second sealing member. A through electrode is formed along an inner wall surface of the through hole to establish conduction between an electrode formed on a first main surface and an external electrode terminal formed on a second main surface. A corrosion resistance structure to solder is formed on the through electrode that establishes conduction between the electrode and the external electrode terminal with a conductive metal other than Au.
    Type: Application
    Filed: December 19, 2019
    Publication date: March 10, 2022
    Applicant: DAISHINKU CORPORATION
    Inventors: Satoru ISHINO, Hiroki YOSHIOKA, Hiroki FUJIWARA
  • Publication number: 20220014173
    Abstract: In a piezoelectric resonator device according to an embodiment, an internal space is formed by bonding a first sealing member to a crystal resonator plate and bonding a second sealing member to the crystal resonator plate. The internal space hermetically seals a vibrating part including a first excitation electrode and a second excitation electrode of the crystal resonator plate. Seal paths that hermetically seal the vibrating part of the crystal resonator plate are formed to have an annular shape in plan view. A plurality of external electrode terminals is formed on a second main surface of the second sealing member to be electrically connected to an external circuit board. The external electrode terminals are respectively disposed on and along an external frame part surrounding the internal space in plan view.
    Type: Application
    Filed: December 12, 2019
    Publication date: January 13, 2022
    Applicant: DAISHINKU CORPORATION
    Inventors: Satoru ISHINO, Yuka KOJO
  • Publication number: 20210399715
    Abstract: In a crystal oscillator, a crystal resonator plate is bonded to, via laminated bonding patterns, a first sealing member covering a first excitation electrode of the crystal resonator plate; and a second sealing member covering a second excitation electrode of the crystal resonator plate. An internal space is formed, which hermetically seals a vibrating part including the first and second excitation electrodes of the crystal resonator plate. The laminated bonding patterns include a laminated sealing pattern annularly formed to surround the vibrating part in plan view so as to hermetically seal the internal space, and a laminated conductive pattern establishing conduction between wiring and electrodes. The laminated conductive pattern is disposed within a closed space surrounded by the laminated sealing pattern. To the laminated sealing pattern, GND potential is applied when the crystal oscillator operates.
    Type: Application
    Filed: October 29, 2019
    Publication date: December 23, 2021
    Applicant: DAISHINKU CORPORATION
    Inventors: Satoru ISHINO, Takuya KOJO
  • Patent number: 11152911
    Abstract: A crystal resonator (101) includes: a piezoelectric resonator plate (2) on which a first excitation electrode and a second excitation electrode are formed; a first sealing member (3) that covers the first excitation electrode of the piezoelectric resonator plate (2); and a second sealing member (4) that covers the second excitation electrode of the piezoelectric resonator plate (2). The first sealing member (3) is bonded to the piezoelectric resonator plate (2) while the second sealing member (4) is bonded to the piezoelectric resonator plate (2) so that an internal space (13), which hermetically seals a vibrating part including the first excitation electrode and the second excitation electrode of the piezoelectric resonator plate (2), is formed. Plating films (51, 52) are formed respectively on both the first sealing member (3) and the second sealing member (4), on respective surfaces opposite to surfaces to be bonded to the piezoelectric resonator plate (2).
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: October 19, 2021
    Assignee: Daishinku Corporation
    Inventor: Satoru Ishino
  • Patent number: 10771037
    Abstract: A piezoelectric resonator device having a sandwich structure is provided, which is stably bonded to an external element. In the piezoelectric resonator device 1, at least a vibrating part 21 of a piezoelectric substrate 2 is sealed by a first sealing member 3 and a second sealing member 4. The piezoelectric substrate 2 includes: the vibrating part 21; and an external frame part 23 that is thicker than the vibrating part 21 and that surrounds the outer periphery of the vibrating part 21. External electrodes 31 to be connected to an external element 5 are provided on at least one of the first sealing member 3 and the second sealing member 4. The external element 5 is connected to the external electrodes 31 at least on the external frame part 23 of the piezoelectric substrate 2.
    Type: Grant
    Filed: February 5, 2016
    Date of Patent: September 8, 2020
    Assignee: Daishinku Corporation
    Inventors: Takuya Kojo, Satoru Ishino
  • Publication number: 20190312562
    Abstract: A crystal resonator (101) includes: a piezoelectric resonator plate (2) on which a first excitation electrode and a second excitation electrode are formed; a first sealing member (3) that covers the first excitation electrode of the piezoelectric resonator plate (2); and a second sealing member (4) that covers the second excitation electrode of the piezoelectric resonator plate (2). The first sealing member (3) is bonded to the piezoelectric resonator plate (2) while the second sealing member (4) is bonded to the piezoelectric resonator plate (2) so that an internal space (13), which hermetically seals a vibrating part including the first excitation electrode and the second excitation electrode of the piezoelectric resonator plate (2), is formed. Plating films (51, 52) are formed respectively on both the first sealing member (3) and the second sealing member (4), on respective surfaces opposite to surfaces to be bonded to the piezoelectric resonator plate (2).
    Type: Application
    Filed: August 31, 2017
    Publication date: October 10, 2019
    Applicant: Daishinku Corporation
    Inventor: Satoru ISHINO
  • Patent number: 10224898
    Abstract: This piezoelectric wafer has: a piezoelectric vibration piece; a frame portion that supports the piezoelectric vibration piece; and a coupling portion that couples the piezoelectric vibration piece to the frame portion. A pair of first and second metal bumps is formed in juxtaposition on the piezoelectric vibration piece. The coupling portion has slits extending in its width direction except in a bridge, i.e., a part of the coupling portion in its width direction. An end in the width direction of the bridge is distantly spaced from the first and second metal bumps both in a direction perpendicular to the width direction of the coupling portion with no overlap with these metal bumps.
    Type: Grant
    Filed: September 17, 2014
    Date of Patent: March 5, 2019
    Assignee: Daishinku Corporation
    Inventors: Tadataka Koga, Tomo Fujii, Kozo Shibutani, Satoru Ishino, Yoshinari Morimoto, Kazuki Otani
  • Patent number: 10211807
    Abstract: This piezoelectric wafer has: a piezoelectric vibration piece; a frame portion that supports the piezoelectric vibration piece; and a coupling portion that couples the piezoelectric vibration piece to the frame portion. The piezoelectric vibration piece is broken off at the coupling portion and separated from the piezoelectric wafer. On front and back surfaces of the coupling portion, grooved slits extending along a width direction of the coupling portion are formed except for parts of the coupling portion in the width direction. An electrode on at least one of front and back surfaces of the piezoelectric vibration piece is extracted to a frame-portion side of the piezoelectric wafer by way of the part of the coupling portion in the width direction.
    Type: Grant
    Filed: September 17, 2014
    Date of Patent: February 19, 2019
    Assignee: Daishinku Corporation
    Inventors: Tomo Fujii, Kozo Shibutani, Satoru Ishino, Yoshinari Morimoto, Tadataka Koga, Kazuki Otani
  • Publication number: 20180076790
    Abstract: A piezoelectric resonator device having a sandwich structure is provided, which is stably bonded to an external element. In the piezoelectric resonator device 1, at least a vibrating part 21 of a piezoelectric substrate 2 is sealed by a first sealing member 3 and a second sealing member 4. The piezoelectric substrate 2 includes: the vibrating part 21; and an external frame part 23 that is thicker than the vibrating part 21 and that surrounds the outer periphery of the vibrating part 21. External electrodes 31 to be connected to an external element 5 are provided on at least one of the first sealing member 3 and the second sealing member 4. The external element 5 is connected to the external electrodes 31 at least on the external frame part 23 of the piezoelectric substrate 2.
    Type: Application
    Filed: February 5, 2016
    Publication date: March 15, 2018
    Applicant: Daishinku Corporation
    Inventors: Takuya KOJO, Satoru ISHINO
  • Publication number: 20180034442
    Abstract: A piezoelectric resonator device having a sandwich structure is provided, which is capable of improving reliability while ensuring hermeticity of the internal space in which a vibrating part of the piezoelectric resonator plate is sealed. A crystal resonator 101 includes: a crystal resonator plate 2; a first sealing member 3 covering a first excitation electrode 221 of the crystal resonator plate 2; and a second sealing member 4 covering a second excitation electrode 222 of the crystal resonator plate 2. A third through hole 269 is formed in the crystal resonator plate 2 to penetrate between a first main surface 211 and a second main surface 212. A through electrode 71 of the third through hole 269 is conducted to the first excitation electrode 221. A seventh through hole 350 is formed in the first sealing member 3 to penetrate between a first main surface 311 and a second main surface 312.
    Type: Application
    Filed: January 6, 2016
    Publication date: February 1, 2018
    Applicant: Daishinku Corporation
    Inventors: Takuya KOJO, Satoru ISHINO
  • Patent number: 9748922
    Abstract: A tuning-fork type crystal resonator plate includes a base portion and a pair of leg portions protruding from the base portion in one direction. A groove and a bank portion are formed on at least one of main surfaces of each of the leg portions. The bank portion is formed accompanied by the formation of the groove, and a width of the bank portion differs along a width direction. The bank portion is constituted by a thick portion having a large width and a thin portion having a small width.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: August 29, 2017
    Assignee: DAISHINKU CORPORATION
    Inventors: Satoru Ishino, Yoshinobu Sakamoto
  • Patent number: 9548719
    Abstract: A tuning fork type piezoelectric vibration piece 2 includes a base portion 25 in which a piezoelectric vibration substrate has a connection area with an external element, and a pair of leg portions 21, 22 projecting from a first end face of the base portion. The pair of leg portions has vibrating portions 212, 222 equipped with drive electrodes, wide weight portions 211, 221 formed at tip ends of the vibrating portions, and connecting portions 213, 223 between the vibrating portions and the weight portions. The connecting portions have widening sections whose width increases exponentially from the vibrating portions to the weight portions. The length of the widening sections is greater than their width. The weight portions have constant-width parts whose width is fixed from their connecting positions with the connecting portions. The weight portions are free of drive electrodes.
    Type: Grant
    Filed: May 27, 2014
    Date of Patent: January 17, 2017
    Assignee: DAISHINKU CORPORATION
    Inventors: Yoshinobu Sakamoto, Satoru Ishino, Tomo Fujii
  • Publication number: 20160308510
    Abstract: A tuning-fork type crystal resonator plate includes a base portion and a pair of leg portions protruding from the base portion in one direction. A groove and a bank portion are formed on at least one of main surfaces of each of the leg portions. The bank portion is formed accompanied by the formation of the groove, and a width of the bank portion differs along a width direction. The bank portion is constituted by a thick portion having a large width and a thin portion having a small width.
    Type: Application
    Filed: March 12, 2014
    Publication date: October 20, 2016
    Inventors: Satoru ISHINO, Yoshinobu SAKAMOTO
  • Publication number: 20160294353
    Abstract: This piezoelectric wafer has: a piezoelectric vibration piece; a frame portion that supports the piezoelectric vibration piece; and a coupling portion that couples the piezoelectric vibration piece to the frame portion. A pair of first and second metal bumps is formed in juxtaposition on the piezoelectric vibration piece. The coupling portion has slits extending in its width direction except in a bridge, i.e., a part of the coupling portion in its width direction. An end in the width direction of the bridge is distantly spaced from the first and second metal bumps both in a direction perpendicular to the width direction of the coupling portion with no overlap with these metal bumps.
    Type: Application
    Filed: September 17, 2014
    Publication date: October 6, 2016
    Inventors: Tadataka KOGA, Tomo FUJII, Kozo SHIBUTANI, Satoru ISHINO, Yoshinari MORIMOTO, Kazuki OTANI
  • Publication number: 20160260887
    Abstract: This piezoelectric wafer has: a piezoelectric vibration piece; a frame portion that supports the piezoelectric vibration piece; and a coupling portion that couples the piezoelectric vibration piece to the frame portion. The piezoelectric vibration piece is broken off at the coupling portion and separated from the piezoelectric wafer. On front and back surfaces of the coupling portion, grooved slits extending along a width direction of the coupling portion are formed except for parts of the coupling portion in the width direction. An electrode on at least one of front and back surfaces of the piezoelectric vibration piece is extracted to a frame-portion side of the piezoelectric wafer by way of the part of the coupling portion in the width direction.
    Type: Application
    Filed: September 17, 2014
    Publication date: September 8, 2016
    Inventors: Tomo Fujii, Kozo Shinutani, Satoru Ishino, Yoshinari Morimoto, Tadataka Koga, Kazuki Otani
  • Patent number: 9344057
    Abstract: For a tuning-fork type crystal resonator plate, a crystal plate having a crystal orientation is used. The tuning-fork type crystal resonator plate includes: a base portion; and a pair of first and second leg portions protruding from the base portion in one direction. In the first leg portion and the second leg portion, grooves are formed so that each of the grooves is biased relative to a center of the corresponding first or second leg portion in a width direction. A lowermost point of the groove is positioned in a middle of the groove in the width direction (width direction of the first leg portion and the second leg portion) in a state viewed from an end surface of the first and second leg portions in the width direction.
    Type: Grant
    Filed: December 11, 2013
    Date of Patent: May 17, 2016
    Assignee: DAISHINKU CORPORATION
    Inventors: Yoshinobu Sakamoto, Satoru Ishino, Yoshinari Morimoto, Taiki Goto