Patents by Inventor Satoru Kan

Satoru Kan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230361661
    Abstract: A field magnet manufacturing method including reheating and softening a bonded magnet after thermal curing; and press-fitting the softened bonded magnet into a case from an opening on one side of the case. The case has a cylindrical portion and a lid portion coupled to another side of the cylindrical portion. The cylindrical portion has a fixing portion for the bonded magnet. At least the fixing portion is formed of a magnetic material. The press-fitting includes feeding the bonded magnet relatively into the cylindrical portion while allowing a relative posture variation between the bonded magnet and the case. This makes it possible to stably feed even the softened bonded magnet into the case, and the inner surface of the bonded magnet has a similar accuracy to that of the inner surface of the case.
    Type: Application
    Filed: September 30, 2020
    Publication date: November 9, 2023
    Applicant: AICHI STEEL CORPORATION
    Inventors: Satoru KAN, Hiroaki HIRANO, Hironar MITARA, Takumi ASANO, Motonobu FURUYAMA
  • Publication number: 20230317370
    Abstract: A field magnet manufacturing method where a bonded magnet's inner surface press-fitted in a yoke has a certain accuracy irrespective of the accuracy of the yoke's outer circumferential surface. A cylindrical bonded magnet from binding magnet particles with a thermosetting resin is fixed in a tubular yoke of magnetic material. The method includes reheating and softening the bonded magnet after thermal curing; and press-fitting in the bonded magnet after the softening step from a tapered portion on one end side of the yoke to press the bonded magnet's outer circumferential surface against the yoke's inner surface. The press-fitting includes feeding the bonded magnet relatively into the yoke while allowing a relative posture variation between the bonded magnet and the yoke so the bonded magnet's inner surface to be remolded into a shape along the inner surface of the yoke exhibits almost the same accuracy as the yoke's inner surface.
    Type: Application
    Filed: June 6, 2023
    Publication date: October 5, 2023
    Applicant: AICHI STEEL CORPORATION
    Inventors: Satoru KAN, Hiroaki HIRANO, Hironari MITARAI, Takumi ASANO, Motonobu FURUYAMA
  • Patent number: 11710598
    Abstract: A field magnet manufacturing method where a bonded magnet's inner surface press-fitted in a yoke has a certain accuracy irrespective of the accuracy of the yoke's outer circumferential surface. A cylindrical bonded magnet from binding magnet particles with a thermosetting resin is fixed in a tubular yoke of magnetic material. The method includes reheating and softening the bonded magnet after thermal curing; and press-fitting in the bonded magnet after the softening step from a tapered portion on one end side of the yoke to press the bonded magnet's outer circumferential surface against the yoke's inner surface. The press-fitting includes feeding the bonded magnet relatively into the yoke while allowing a relative posture variation between the bonded magnet and the yoke so the bonded magnet's inner surface to be remolded into a shape along the inner surface of the yoke exhibits almost the same accuracy as the yoke's inner surface.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: July 25, 2023
    Assignee: AICHI STEEL CORPORATION
    Inventors: Satoru Kan, Hiroaki Hirano, Hironari Mitarai, Takumi Asano, Motonobu Furuyama
  • Publication number: 20220223341
    Abstract: A field magnet manufacturing method where a bonded magnet's inner surface press-fitted in a yoke has a certain accuracy irrespective of the accuracy of the yoke's outer circumferential surface. A cylindrical bonded magnet from binding magnet particles with a thermosetting resin is fixed in a tubular yoke of magnetic material. The method includes reheating and softening the bonded magnet after thermal curing; and press-fitting in the bonded magnet after the softening step from a tapered portion on one end side of the yoke to press the bonded magnet's outer circumferential surface against the yoke's inner surface. The press-fitting includes feeding the bonded magnet relatively into the yoke while allowing a relative posture variation between the bonded magnet and the yoke so the bonded magnet's inner surface to be remolded into a shape along the inner surface of the yoke exhibits almost the same accuracy as the yoke's inner surface.
    Type: Application
    Filed: May 29, 2020
    Publication date: July 14, 2022
    Applicant: AICHI STEEL CORPORATION
    Inventors: Satoru KAN, Hiroaki HIRANO, Hironari MITARAI, Takumi ASANO, Motonobu FURUYAMA
  • Patent number: 7812484
    Abstract: To improve resistance of a motor device against an organic solvent and to suppress degradation in performance of the motor device with time. In a motor device, an excitation magnet is formed using a hollow-cylinder shaped anisotropic bonded magnet 13. This bonded magnet 13 is press-fitted in a housing 12 and is held. The bonded magnet 13 is formed of a hollow-cylinder shaped anisotropic rare earth bonded magnet which is obtained by compounding an anisotropic rare earth magnet powder with a phenol-novolac type epoxy resin, followed by molding. The anisotropic rare earth bonded magnet 13 is press-fitted along an inner peripheral portion of the housing 12, and on an exposed surface layer of the anisotropic rare earth bonded magnet press-fitted in the housing, a coating layer is formed by an infiltration treatment using a polyamide-imide-based resin.
    Type: Grant
    Filed: November 29, 2005
    Date of Patent: October 12, 2010
    Assignee: Aichi Steel Corporation
    Inventors: Yoshinobu Honkura, Hiroshi Matsuoka, Atsushi Kano, Kenji Noguchi, Hironari Mitarai, Satoru Kan
  • Publication number: 20080124235
    Abstract: [Object] To improve resistance of a motor device against an organic solvent and to suppress degradation in performance of the motor device with time. [Solving Means] In a motor device, an excitation magnet is formed using a hollow-cylinder shaped anisotropic bonded magnet 13. This bonded magnet 13 is press-fitted in a housing 12 and is held. The bonded magnet 13 is formed of a hollow-cylinder shaped anisotropic rare earth bonded magnet which is obtained by compounding an anisotropic rare earth magnet powder with a phenol-novolac type epoxy resin, followed by molding. The anisotropic rare earth bonded magnet 13 is press-fitted along an inner peripheral portion of the housing 12, and on an exposed surface layer of the anisotropic rare earth bonded magnet press-fitted in the housing, a coating layer is formed by an infiltration treatment using a polyamide-imide-based resin.
    Type: Application
    Filed: November 29, 2005
    Publication date: May 29, 2008
    Inventors: Yoshinobu Honkura, Hiroshi Matsuoka, Atsushi Kano, Kenji Noguchi, Hironari Mitarai, Satoru Kan