Patents by Inventor Satoru Matsuishi

Satoru Matsuishi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190382657
    Abstract: In a phosphor according to an aspect, an emission site has a perovskite crystal structure expressed by ABX3, in which A and B are each a cation and X is an anion, and an emission element is located at a B site serving as a body center of the perovskite crystal structure.
    Type: Application
    Filed: August 27, 2019
    Publication date: December 19, 2019
    Applicants: KOITO MANUFACTURING CO., LTD., TOKYO INSTITUTE OF TECHNOLOGY, NATIONAL UNIVERSITY CORPORATION NAGOYA UNIVERSITY
    Inventors: Hisayoshi DAICHO, Yu SHINOMIYA, Kiminori ENOMOTO, Hideo HOSONO, Satoru MATSUISHI, Hiroshi SAWA, Akitoshi NAKANO
  • Patent number: 10370590
    Abstract: A phosphor is represented by the general formula aMIX·MII1-xMIMVO4:(Re)x where MI is at least one atomic element selected from the group consisting of K, Li, Na, Rb, Cs, Fr, Cu, and Ag, with K being essential; MII is at least one atomic element selected from the group consisting of Mg, Ca, Sr, Ba, Ra, Mn, Zn, Cd, and Sn; MV is at least one atomic element selected from the group consisting of P, V, Nb, Ta, As, Sb, and Bi; X is at least one halogen element, with F being essential; Re is at least one atomic element selected from the group consisting of rare earth elements, with Eu being essential; and a is in the range 0.6?a?1.4.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: August 6, 2019
    Assignees: KOITO MANUFACTURING CO., LTD., TOKYO INSTITUTE OF TECHNOLOGY, NATIONAL UNIVERSITY CORPORATION NAGOYA UNIVERSITY
    Inventors: Hisayoshi Daicho, Yu Shinomiya, Kiminori Enomoto, Hideo Hosono, Satoru Matsuishi, Hiroshi Sawa, Akitoshi Nakano
  • Patent number: 10124319
    Abstract: If a conductive mayenite compound having a large specific surface area is obtained, the usefulness thereof in respective applications is remarkably increased. A conductive mayenite compound powder having a conduction electron density of 1015 cm?3 or more and a specific surface area of 5 m2g?1 or more is produced by: the following steps: (1) forming a precursor powder by subjecting a mixture of a starting material powder and water to a hydrothermal treatment; (2) forming a mayenite compound powder by heating and dehydrating the precursor powder; (3) forming an activated mayenite compound powder by heating the compound powder in an inert gas atmosphere or in a vacuum; and (4) injecting electrons into the mayenite compound through a reduction treatment by mixing the activated mayenite compound powder with a reducing agent.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: November 13, 2018
    Assignees: TOKYO INSTITUTE OF TECHNOLOGY, JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Hideo Hosono, Michikazu Hara, Yasunori Inoue, Masaaki Kitano, Fumitaka Hayashi, Toshiharu Yokoyama, Satoru Matsuishi, Yoshitake Toda
  • Publication number: 20170095793
    Abstract: If a conductive mayenite compound having a large specific surface area is obtained, the usefulness thereof in respective applications is remarkably increased. A conductive mayenite compound powder having a conduction electron density of 1015 cm?3 or more and a specific surface area of 5 m2g?1 or more is produced by: the following steps: (1) forming a precursor powder by subjecting a mixture of a starting material powder and water to a hydrothermal treatment; (2) forming a mayenite compound powder by heating and dehydrating the precursor powder; (3) forming an activated mayenite compound powder by heating the compound powder in an inert gas atmosphere or in a vacuum; and (4) injecting electrons into the mayenite compound through a reduction treatment by mixing the activated mayenite compound powder with a reducing agent.
    Type: Application
    Filed: December 19, 2016
    Publication date: April 6, 2017
    Applicants: TOKYO INSTITTUE OF TECHNOLOGY, JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Hideo Hosono, Michikazu Hara, Yasunori Inoue, Masaaki Kitano, Fumitaka Hayashi, Toshiharu Yokoyama, Satoru Matsuishi, Yoshitake Toda
  • Publication number: 20170058198
    Abstract: A phosphor is represented by the general formula aMIX.MII1-xMIMVO4:(Re)x where MI is at least one atomic element selected from the group consisting of K, Li, Na, Rb, Cs, Fr, Cu, and Ag, with K being essential; MII is at least one atomic element selected from the group consisting of Mg, Ca, Sr, Ba, Ra, Mn, Zn, Cd, and Sn; MV is at least one atomic element selected from the group consisting of P, V, Nb, Ta, As, Sb, and Bi; X is at least one halogen element, with F being essential; Re is at least one atomic element selected from the group consisting of rare earth elements, with Eu being essential; and a is in the range 0.6?a?1.4.
    Type: Application
    Filed: August 26, 2016
    Publication date: March 2, 2017
    Applicants: Koito Manufacturing Co., Ltd., Tokyo Institute of Technology, National University Corporation Nagoya University
    Inventors: Hisayoshi DAICHO, Yu SHINOMIYA, Kiminori ENOMOTO, Hideo HOSONO, Satoru MATSUISHI, Hiroshi SAWA, Akitoshi NAKANO
  • Patent number: 9573822
    Abstract: If a conductive mayenite compound having a large specific surface area is obtained, the usefulness thereof in respective applications is remarkably increased. A conductive mayenite compound powder having a conduction electron density of 1015 cm?3 or more and a specific surface area of 5 m2g?1 or more is produced by: (1) a step for forming a precursor powder by subjecting a mixture of a starting material powder and water to a hydrothermal treatment; (2) a step for forming a mayenite compound powder by heating and dehydrating the precursor powder; (3) a step for forming an activated mayenite compound powder by heating the compound powder in an inert gas atmosphere or in a vacuum; and (4) a step for injecting electrons into the mayenite compound through a reduction treatment by mixing the activated mayenite compound powder with a reducing agent.
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: February 21, 2017
    Assignees: TOKYO INSTITUTE OF TECHNOLOGY, JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Hideo Hosono, Michikazu Hara, Yasunori Inoue, Masaaki Kitano, Fumitaka Hayashi, Toshiharu Yokoyama, Satoru Matsuishi, Yoshitake Toda
  • Patent number: 9150423
    Abstract: The present invention provides a catalyst substance that is stable and performs well in the synthesis of ammonia, one of the most important chemical substances for fertilizer ingredients and the like. The catalyst substance exhibits catalytic activity under mild synthesis conditions not requiring high pressure, and is also advantageous from a resource perspective. Further provided is a method for producing the same. This catalyst comprises a supported metal catalyst that is supported on a mayenite type compound including conduction electrons of 1015 cm?3 or more and serving as a support for the ammonia synthesis catalyst. The mayenite type compound used as the support may take any form, including that of powder, a porous material, a sintered body, a thin-film, or a single crystal. Use of this catalyst makes it possible to increase the electron donating ability toward a transition metal.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: October 6, 2015
    Assignee: TOKYO INSTITUTE OF TECHNOLOGY
    Inventors: Hideo Hosono, Michikazu Hara, Masaaki Kitano, Sung Wng Kim, Satoru Matsuishi, Yoshitake Toda, Toshiharu Yokoyama, Fumitaka Hayashi
  • Publication number: 20150239747
    Abstract: If a conductive mayenite compound having a large specific surface area is obtained, the usefulness thereof in respective applications is remarkably increased. A conductive mayenite compound powder having a conduction electron density of 1015 cm?3 or more and a specific surface area of 5 m2g?1 or more is produced by: (1) a step for forming a precursor powder by subjecting a mixture of a starting material powder and water to a hydrothermal treatment; (2) a step for forming a mayenite compound powder by heating and dehydrating the precursor powder; (3) a step for forming an activated mayenite compound powder by heating the compound powder in an inert gas atmosphere or in a vacuum; and (4) a step for injecting electrons into the mayenite compound through a reduction treatment by mixing the activated mayenite compound powder with a reducing agent.
    Type: Application
    Filed: August 20, 2013
    Publication date: August 27, 2015
    Applicant: TOKYO INSTITUTE OF TECHNOLOGY
    Inventors: Hideo Hosono, Michikazu Hara, Yasunori Inoue, Masaaki Kitano, Fumitaka Hayashi, Toshiharu Yokoyama, Satoru Matsuishi, Yoshitake Toda
  • Publication number: 20130183224
    Abstract: The present invention provides a catalyst substance that is stable and performs well in the synthesis of ammonia, one of the most important chemical substances for fertilizer ingredients and the like. The catalyst substance exhibits catalytic activity under mild synthesis conditions not requiring high pressure, and is also advantageous from a resource perspective. Further provided is a method for producing the same. This catalyst comprises a supported metal catalyst that is supported on a mayenite type compound including conduction electrons of 1015 cm?3 or more and serving as a support for the ammonia synthesis catalyst. The mayenite type compound used as the support may take any form, including that of powder, a porous material, a sintered body, a thin-film, or a single crystal. Use of this catalyst makes it possible to increase the electron donating ability toward a transition metal.
    Type: Application
    Filed: December 6, 2011
    Publication date: July 18, 2013
    Applicant: TOKYO INSTITUTE OF TECHNOLOGY
    Inventors: Hideo Hosono, Michikazu Hara, Masaaki Kitano, Sung Wng Kim, Satoru Matsuishi, Yoshitake Toda, Toshiharu Yokoyama, Fumitaka Hayashi
  • Patent number: 8288321
    Abstract: Provides a new non-oxide system compound material superconductor as an alternative of the perovskite type copper oxides superconductor. Layered compounds which are represented by chemical formula AF(TM)Pn (wherein, A is at least one selected from a group consisting of the second family elements in the long form periodic table, F is a fluorine ion, TM is at least one selected from a group of transition metal elements consisting of Fe, Ru, Os, Ni, Pd, and Pt, and Pn is at least one selected from a group consisting of the fifteenth family elements in the long form periodic table), having a crystal structure of ZrCuSiAs type (space group P4/nmm) and which become superconductors by doping trivalent cations or divalent anions.
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: October 16, 2012
    Assignee: Japan Science and Technology Agency
    Inventors: Hideo Hosono, Hiroshi Yanagi, Toshio Kamiya, Satoru Matsuishi, Sungwng Kim, Seok Gyu Yoon, Hidenori Hiramatsu, Masahiro Hirano, Takatoshi Nomura, Yoichi Kamihara
  • Publication number: 20110111965
    Abstract: Provides a new non-oxide system compound material superconductor as an alternative of the perovskite type copper oxides superconductor. Layered compounds which are represented by chemical formula AF(TM)Pn (wherein, A is at least one selected from a group consisting of the second family elements in the long form periodic table, F is a fluorine ion, TM is at least one selected from a group of transition metal elements consisting of Fe, Ru, Os, Ni, Pd, and Pt, and Pn is at least one selected from a group consisting of the fifteenth family elements in the long form periodic table), having a crystal structure of ZrCuSiAs type (space group P4/nmm) and which become superconductors by doping trivalent cations or divalent anions.
    Type: Application
    Filed: July 9, 2009
    Publication date: May 12, 2011
    Applicant: JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Hideo Hosono, Hiroshi Yanagi, Toshio Kamiya, Satoru Matsuishi, Sungwng Kim, Seok Gyu Yoon, Hidenori Hiramatsu, Masahiro Hirano, Takatoshi Nomura, Yoichi Kamihara
  • Publication number: 20110045985
    Abstract: A superconductor which comprises a new compound composition substituting for perovskite copper oxides. The superconductor is characterized by comprising a compound which is represented by the chemical formula A(TM)2Pn2 [wherein A is at least one member selected from the elements in Group 1, the elements in Group 2, or the elements in Group 3 (Sc, Y, and the rare-earth metal elements); TM is at least one member selected from the transition metal elements Fe, Ru, Os, Ni, Pd, or Pt; and Pn is at least one member selected from the elements in Group 15 (pnicogen elements)] and which has an infinite-layer crystal structure comprising (TM)Pn layers alternating with metal layers of the element (A).
    Type: Application
    Filed: February 20, 2009
    Publication date: February 24, 2011
    Applicant: JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Hideo Hosono, Hiroshi Yanagi, Toshio Kamiya, Satoru Matsuishi, Sungwng Kim, Seok Gyu Yoon, Hidenori Hiramatsu, Masahiro Hirano, Yoichi Kamihara, Takatoshi Nomura
  • Patent number: 7892458
    Abstract: In an electride C12A7 provided by replacing free oxygen in 12CaO.7Al2O3 with electrons, a material having metallic electroconductivity and an electric conductivity of more than 5×102 S/cm at room temperature could not have been produced without difficulties. An electride 12CaO.7Al2O3, which has metallic electroconductivity and has an electric conductivity of more than 5×102 S/cm at room temperature, can be produced by heat-treating titanium metal vapor and 12CaO.7Al2O3 single crystal, sinter, or thin film at a temperature above 600° C. and below 1,450° C. for less than 240 hours. Further, thermoelectric field electron release can also be realized using an electron release chip fabricated from the electride.
    Type: Grant
    Filed: November 17, 2006
    Date of Patent: February 22, 2011
    Assignee: Japan Science and Technology Agency
    Inventors: Hideo Hosono, Sungwng Kim, Katsurou Hayashi, Masashi Miyakawa, Satoru Matsuishi, Toshio Kamiya, Masahiro Hirano, Yoshitake Toda
  • Publication number: 20090224214
    Abstract: In an electride C12A7 provided by replacing free oxygen in 12CaO.7Al2O3 with electrons, a material having metallic electroconductivity and an electric conductivity of more than 5×102 S/cm at room temperature could not have been produced without difficulties. An electride 12CaO.7Al2O3, which has metallic electroconductivity and has an electric conductivity of more than 5×102 S/cm at room temperature, can be produced by heat-treating titanium metal vapor and 12CaO.7Al2O3 single crystal, sinter, or thin film at a temperature above 600° C. and below 1,450° C. for less than 240 hours. Further, thermoelectric field electron release can also be realized using an electron release chip fabricated from the electride.
    Type: Application
    Filed: November 17, 2006
    Publication date: September 10, 2009
    Applicant: JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Hideo Hosono, Sungwng Kim, Katsurou Hayashi, Masashi Miyakawa, Satoru Matsuishi, Toshio Kamiya, Masahiro Hirano, Yoshitake Toda