Patents by Inventor Satoshi Abe

Satoshi Abe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9200884
    Abstract: A magnetic sensor system includes a scale and a magnetic sensor arranged in a relative positional relationship variable in a first direction, and a computing unit. The magnetic sensor includes a first detection circuit, a second detection circuit and a third detection circuit that are disposed at a first position, a second position and a third position, respectively. Each of the first to third detection circuits includes a spin-valve MR element. A difference between two of the first to third positions that are the most distant from each other in a first direction falls within a one-pitch amount of change in the relative positional relationship between the scale and the magnetic sensor. The computing unit generates first and second post-computation signals having mutually different phases by computation using detection signals from the first to third detection circuits.
    Type: Grant
    Filed: January 27, 2014
    Date of Patent: December 1, 2015
    Assignee: TDK CORPORATION
    Inventors: Kunihiro Ueda, Hiraku Hirabayashi, Satoshi Abe, Homare Tokida
  • Patent number: 9203119
    Abstract: Provided is a battery device with high safety, which has improved accuracy of overcurrent detection. In the battery device, an overcurrent detection terminal of a battery state monitoring circuit is connected to a node between a discharge control switch and a charge control switch via a resistor.
    Type: Grant
    Filed: March 3, 2014
    Date of Patent: December 1, 2015
    Assignee: SEIKO INSTRUMENTS INC.
    Inventors: Takashi Ono, Toshiyuki Koike, Satoshi Abe
  • Publication number: 20150333546
    Abstract: A short-circuit and overcurrent detecting circuit includes a reference voltage circuit including a constant current circuit, a first impedance element, a first transistor having a resistance value depending a voltage of a secondary battery, a second impedance element, and a second transistor having a resistance value depending the voltage of the secondary battery, which are connected in series. The reference voltage circuit outputs a first reference voltage from a node of the constant current circuit and the first impedance element, and outputs a second reference voltage from a node of the first transistor and the second impedance element. The short-circuit and overcurrent detecting circuit further includes: a first comparator circuit for comparing a voltage of an overcurrent detecting terminal with the first reference voltage; and a second comparator circuit for comparing the voltage of the overcurrent detecting terminal with the second reference voltage.
    Type: Application
    Filed: May 13, 2015
    Publication date: November 19, 2015
    Inventors: Takashi ONO, Toshiyuki KOIKE, Satoshi ABE, Fumihiko MAETANI
  • Publication number: 20150333555
    Abstract: Provided is a highly safe battery device in which the accuracy of an overcurrent detection current value and a short-circuit current value is improved and current consumption is reduced. A short-circuit and overcurrent detecting circuit includes: a reference voltage circuit configured to output a reference voltage generated when a constant current flows through an impedance element and a transistor having a resistance value that is changed depending on a voltage of a secondary battery; a first comparator circuit configured to compare a voltage of an overcurrent detecting terminal with the reference voltage; and a second comparator circuit configured to compare a voltage based on the voltage of the overcurrent detecting terminal with the reference voltage.
    Type: Application
    Filed: May 13, 2015
    Publication date: November 19, 2015
    Inventors: Takashi ONO, Toshiyuki KOIKE, Satoshi ABE, Fumihiko MAETANI
  • Publication number: 20150321256
    Abstract: An apparatus for producing a laminated object, includes a powder layer forming unit for forming a powder layer of a powdery material, a material supply unit for feeding the powdery material to the powder layer forming unit; and a solidified layer forming unit for forming a solidified layer by irradiating a light beam on a specified portion of the powder layer and sintering or melting the specified portion of the powder layer. The apparatus is configured to produce an integrally laminated three-dimensional object by repeating formation of the powder layer and formation of the solidified layer. The material supply unit includes a cartridge unit charged with the powdery material, the cartridge unit being configured to allow the powdery material to drop downwards.
    Type: Application
    Filed: July 23, 2015
    Publication date: November 12, 2015
    Inventors: Satoshi ABE, Yoshikazu HIGASHI, Isao FUWA, Masataka TAKENAMI, Norio YOSHIDA
  • Publication number: 20150298211
    Abstract: There is provided a selective laser sintering method capable of reducing the trouble in chipping or breakage of the machining tool and the like. The manufacturing method according to an embodiment of the present invention is a method for manufacturing a three-dimensional shaped object by repetition of a powder-layer forming and a solidified-layer forming, the repetition including the steps of (i) forming a solidified layer by irradiating a predetermined portion of a powder layer with a light beam, thereby allowing a sintering of the powder in the predetermined portion or a melting and subsequent solidification thereof, and (ii) forming another solidified layer by newly forming a powder layer on the resulting solidified layer, followed by the irradiation of a predetermined portion of the powder layer with the light beam.
    Type: Application
    Filed: July 9, 2014
    Publication date: October 22, 2015
    Applicant: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Satoshi ABE, Masataka TAKENAMI, Isamu MATSUMOTO
  • Publication number: 20150290741
    Abstract: There is provided a selective laser sintering method capable of reducing the trouble in chipping or breakage of the machining tool and the like. The manufacturing method according to an embodiment of the present invention is a method for manufacturing a three-dimensional shaped object by repetition of a powder-layer forming and a solidified-layer forming, the repetition including the steps of (i) forming a solidified layer by irradiating a predetermined portion of a powder layer with a light beam, thereby allowing a sintering of the powder in the predetermined portion or a melting and subsequent solidification thereof, and (ii) forming another solidified layer by newly forming a powder layer on the resulting solidified layer, followed by the irradiation of a predetermined portion of the powder layer with the light beam.
    Type: Application
    Filed: July 9, 2014
    Publication date: October 15, 2015
    Applicant: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Satoshi Abe, Masataka Takenami, Isamu Matsumoto
  • Patent number: 9156056
    Abstract: An apparatus for producing a laminated object, includes a powder layer forming unit for forming a powder layer of a powdery material, a material supply unit for feeding the powdery material to the powder layer forming unit; and a solidified layer forming unit for forming a solidified layer by irradiating a light beam on a specified portion of the powder layer and sintering or melting the specified portion of the powder layer. The apparatus is configured to produce an integrally laminated three-dimensional object by repeating formation of the powder layer and formation of the solidified layer. The material supply unit includes a cartridge unit charged with the powdery material, the cartridge unit being configured to allow the powdery material to drop downwards.
    Type: Grant
    Filed: August 4, 2009
    Date of Patent: October 13, 2015
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Satoshi Abe, Yoshikazu Higashi, Isao Fuwa, Masataka Takenami, Norio Yoshida
  • Patent number: 9073264
    Abstract: There is provided a method for manufacturing a three-dimensional shaped object. The method of the present invention comprises the steps of: (i) forming a solidified layer by irradiating a predetermined portion of a powder layer with a light beam, thereby allowing sintering of the powder of the predetermined portion or melting and subsequent solidification thereof; and (ii) forming another solidified layer by newly forming a powder layer on the resulting solidified layer, and then irradiating another predetermined portion of the new powder layer with the light beam, the steps (i) and (ii) being repeatedly performed in a chamber; wherein a localized gas flow is provided in the chamber, and at least a part of a fume generated by the irradiation of the light beam is entrained by the localized gas flow.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: July 7, 2015
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Satoshi Abe, Norio Yoshida, Isao Fuwa, Yoshikazu Higashi
  • Publication number: 20150183165
    Abstract: There is provided a manufacturing method of the three-dimensional shaped object, the method being capable of suitably reducing the local raised portion which can occur during the light beam irradiation under the condition of the divided sub-irradiation paths. The manufacturing method of the present invention is performed by repetition of a powder-layer forming and a solidified-layer forming, wherein an irradiation path of the light beam is divided into a plurality of sub-irradiation paths including a short sub-irradiation path with its length being shorter than a predetermined length and a long sub-irradiation path with its length being the predetermined length or longer, and wherein an irradiation mode of the light beam is changed depending on the lengths of the sub-irradiation paths.
    Type: Application
    Filed: March 6, 2013
    Publication date: July 2, 2015
    Applicant: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Satoshi Abe, Isamu Matsumoto, Masataka Takenami, Masaki Kondo, Isao Fuwa, Yoshiyuki Uchinono
  • Patent number: 9005513
    Abstract: An object of the present invention is to easily eliminate fumes inside a chamber, so as to improve a positional accuracy of irradiation with a light beam and a machining accuracy in a method for manufacturing a three-dimensional shaped object. A stacked-layers forming device 1 includes a powder layer forming unit 3, a light beam irradiating unit 4, a base 22 which is fixed and on which a powder layer 32 is formed, a lifting/lowering frame 34 which surrounds the circumference of the base 22 and is freely capable of being lifted and lowered, a cover frame 36 which has a window 36a allowing transmission of light beam in its top surface, and whose bottom surface is opened, and which is disposed on the lifting/lowering frame 34 to form a chamber C, and a gas tank 71 for supplying an ambient gas. The lifting/lowering frame 34 is lowered to reduce the volume of the chamber C, so as to discharge fumes generated inside the cover frame 36, which performs replacement with the ambient gas.
    Type: Grant
    Filed: May 14, 2010
    Date of Patent: April 14, 2015
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Satoshi Abe, Norio Yoshida, Yoshikazu Higashi, Isao Fuwa
  • Patent number: 8999222
    Abstract: There is provided a method for manufacturing a three-dimensional shaped object, the method comprising the repeated steps of: (i) forming a solidified layer by irradiating a predetermined portion of a powder layer with a light beam, thereby allowing a sintering of the powder in the predetermined portion or a melting and subsequent solidification thereof; and (ii) forming another solidified layer by newly forming a powder layer on the resulting solidified layer, followed by the irradiation of a predetermined portion of the powder layer with the light beam, wherein a part of a surface portion of the three-dimensional shaped object is formed as a low-density solidified portion whose solidified density ranges from 50% to 90% so that an application of pressure can be performed by a gas flowing through the low-density solidified portion.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: April 7, 2015
    Assignees: Panasonic Corporation, OPM Laboratory Co., Ltd
    Inventors: Satoshi Abe, Yoshiyuki Uchinono, Isao Fuwa, Norio Yoshida, Kazuho Morimoto
  • Publication number: 20150084599
    Abstract: A charging and discharging control circuit includes a switching circuit that controls the gate of a bidirectional conduction type field effect transistor; a first transistor of which the drain is connected to the drain of the bidirectional conduction type field effect transistor, the gate is connected to the source of the bidirectional conduction type field effect transistor, and the source and the back gate are connected to a first terminal of the switching circuit; and a second transistor of which the drain is connected to the source of the bidirectional conduction type field effect transistor, the gate is connected to the drain of the bidirectional conduction type field effect transistor, and the source and the back gate are connected to the first terminal of the switching circuit. The back gate of the bidirectional conduction type field effect transistor is connected to the first terminal of the switching circuit.
    Type: Application
    Filed: September 17, 2014
    Publication date: March 26, 2015
    Inventors: Satoshi ABE, Atsushi SAKURAI
  • Patent number: 8974727
    Abstract: There is provided a method for manufacturing a three-dimensional shaped object, the method comprising the repeated steps of: (i) forming a solidified layer by irradiating a predetermined portion of a powder layer with a light beam, thereby allowing a sintering of the powder in the predetermined portion or a melting and subsequent solidification thereof; and (ii) forming another solidified layer by newly forming a powder layer on the resulting solidified layer, followed by the irradiation of a predetermined portion of the powder layer with the light beam, wherein a heater element is disposed on the solidified layer during the repeated steps (i) and (ii), and thereby the heater element is situated within the three-dimensional shaped object.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: March 10, 2015
    Assignees: Panasonic Corporation, OPM Laboratory Co., Ltd
    Inventors: Satoshi Abe, Yoshiyuki Uchinono, Isao Fuwa, Norio Yoshida, Kazuho Morimoto
  • Publication number: 20150017055
    Abstract: A manufacturing method of a three-dimensional shaped object is capable of suitably forming a solidified layer by subsequent formation of a powder layer. The manufacturing method according to an embodiment of the present invention is performed by repetition of a powder-layer forming and a solidified-layer forming, the repetition including forming a solidified layer by irradiating a predetermined portion of a powder layer with a light beam, thereby allowing a sintering of the powder in the predetermined portion or a melting and subsequent solidification thereof; and forming another solidified layer by newly forming a powder layer on the resulting solidified layer, followed by the irradiation of a predetermined portion of the powder layer with the light beam, wherein a light-beam condition for an irradiation path with an unirradiated portion on both adjacent sides thereof is different from that for another irradiation path with an irradiated portion at an adjacent region.
    Type: Application
    Filed: March 6, 2013
    Publication date: January 15, 2015
    Applicant: PANASONIC CORPORATION
    Inventors: Satoshi Abe, Norio Yoshida, Yoshikazu Higashi
  • Patent number: 8896268
    Abstract: There is provided a charge/discharge control circuit and a battery assembly including an accurate overcurrent protecting circuit with low consumption current characteristics. The charge/discharge control circuit comprises a current protecting circuit including: a reference voltage circuit having a reference transistor for detecting overcurrent flowing through a control transistor to turn it on, and a constant current circuit; and a comparison circuit for comparing voltage on the reference voltage circuit with voltage generated by overcurrent flowing through the control transistor, wherein when no overcurrent flows, the electric current flowing through the reference voltage circuit is interrupted to reduce power consumption.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: November 25, 2014
    Assignee: Seiko Instruments Inc.
    Inventors: Atsushi Sakurai, Toshiyuki Koike, Satoshi Abe
  • Publication number: 20140341859
    Abstract: Provided is a treatment method which enables regeneration of bone tissue even when the size of a damaged site of bone is large. The treatment method comprises the steps of: culturing chondrocytes which have been seeded onto a porous body, or differentiating stem cells having chondrogenic differentiation potential which have been seeded onto a porous body into chondrocytes and culturing the chondrocytes; and implanting the porous body having the cultured chondrocytes.
    Type: Application
    Filed: May 15, 2013
    Publication date: November 20, 2014
    Inventors: Katsuyuki YAMANAKA, Tadashi KANEKO, Yuuhiro SAKAI, Yoshinobu WATANABE, Takashi MATSUSHITA, Satoshi ABE
  • Publication number: 20140292313
    Abstract: A magnetic sensor system includes a scale and a magnetic sensor arranged in a relative positional relationship variable in a first direction, and a computing unit. The magnetic sensor includes a first detection circuit, a second detection circuit and a third detection circuit that are disposed at a first position, a second position and a third position, respectively. Each of the first to third detection circuits includes a spin-valve MR element. A difference between two of the first to third positions that are the most distant from each other in a first direction falls within a one-pitch amount of change in the relative positional relationship between the scale and the magnetic sensor. The computing unit generates first and second post-computation signals having mutually different phases by computation using detection signals from the first to third detection circuits.
    Type: Application
    Filed: January 27, 2014
    Publication date: October 2, 2014
    Applicant: TDK CORPORATION
    Inventors: Kunihiro UEDA, Hiraku HIRABAYASHI, Satoshi ABE, Homare TOKIDA
  • Publication number: 20140292321
    Abstract: A magnetic sensor includes an MR element and a pair of magnets. The MR element includes a magnetization pinned layer having a magnetization pinned in a direction parallel to an X direction, a free layer having a magnetization that varies depending on an X-direction component of an external magnetic field, and a nonmagnetic layer interposed between the magnetization pinned layer and the free layer. The magnetization pinned layer, the nonmagnetic layer and the free layer are stacked to be adjacent in a Y direction. The free layer receives an interlayer coupling magnetic field in a direction parallel to the X direction resulting from the magnetization pinned layer. The pair of magnets applies a bias magnetic field to the free layer. The bias magnetic field includes a first component in a direction opposite to that of the interlayer coupling magnetic field and a second component in a Z direction.
    Type: Application
    Filed: February 11, 2014
    Publication date: October 2, 2014
    Applicant: TDK CORPORATION
    Inventors: Hiroshi YAMAZAKI, Yoshiyuki MIZOGUCHI, Takahiro IMAI, Satoshi ABE, Homare TOKIDA
  • Publication number: 20140292314
    Abstract: A magnetic sensor system includes a scale and a magnetic sensor arranged in a relative positional relationship variable in a first direction, and a computing unit. The magnetic sensor includes a first detection circuit disposed at a first position and a second detection circuit disposed at a second position. Each of the first and second detection circuits includes a spin-valve magnetoresistive element. The difference between the first position and the second position in the first direction is smaller than or equal to 1.25% of a one-pitch amount of change in the relative positional relationship between the scale and the magnetic sensor. The computing unit generates an abnormal-event determination signal indicative of the presence of an abnormal event in the magnetic sensor by computation using detection signals from the first and second detection circuits.
    Type: Application
    Filed: January 27, 2014
    Publication date: October 2, 2014
    Applicant: TDK CORPORATION
    Inventors: Homare TOKIDA, Satoshi ABE, Hiroshi YAMAZAKI, Takahiro IMAI