Patents by Inventor Satoshi Ebihara

Satoshi Ebihara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11968468
    Abstract: A ramp buffer circuit includes a ramp buffer input device having an input coupled to receive a ramp signal. A current monitor is circuit coupled to a power line and the ramp buffer input device to generate a current monitor signal in response to an input current conducted through the ramp buffer input device. A corner bias circuit is coupled to the current monitor circuit to generate an assist bias voltage in response to the current monitor signal. A bias current source is coupled to an output of the ramp buffer input device. An assist current source is coupled to the corner bias circuit and coupled between the output of the ramp buffer input device and ground to conduct an assist current from the output of the ramp buffer input device to ground in response to the assist bias voltage.
    Type: Grant
    Filed: April 13, 2022
    Date of Patent: April 23, 2024
    Assignee: OMNIVISION TECHNOLOGIES, INC.
    Inventors: Hiroaki Ebihara, Zhenfu Tian, Peter Bartkovjak, Satoshi Sakurai
  • Patent number: 10913249
    Abstract: The present invention provide an adhesive composition which is suitable for laminating a polyimide film with a copper foil in a double-sided flexible copper-clad laminate to be used for a flexible printed wiring board. The adhesive composition comprises a polyamide-imide resin, an epoxy resin, and a phosphorus-type flame retardant, wherein 15 to 40 parts by mass of the epoxy resin is compounded to 85 to 60 parts by mass of the polyamide-imide resin; a glass transition temperature of the polyamide-imide resin is 250° C. or higher; an acid value of the polyamide-imide resin is 50 to 150 mgKOH/g; the epoxy resin is liquid at 25° C.; 15 to 60 parts by mass of the phosphorus-type flame retardant is compounded to 100 parts by mass in total of the polyamide-imide resin and the epoxy resin; and 50% by mass or more of the phosphorus-type flame retardant is a phosphinic acid derivative of a phenanthrene type.
    Type: Grant
    Filed: November 9, 2016
    Date of Patent: February 9, 2021
    Assignees: TOYOBO CO., LTD., NIPPON MEKTRON, LTD.
    Inventors: Takehisa Yane, Hideyuki Koyanagi, Manabu Ohrui, Satoshi Ebihara
  • Patent number: 10485093
    Abstract: Provided are both a flexible printed board, in which heat dissipation performance can be improved in without using an aluminum heal dissipating material, which is light in weight, has good processability and can be reduced in cost, and a method for manufacturing such a flexible printed board. The flexible printed board is a flexible printed board 10 on which a power consuming load is mounted, including: a front surface heat dissipation layer 30 made of a copper foil and having a circuit portion on which the load is mounted; a thermally conductive resin layer 20 having the front surface heat dissipation layer 30 laminated to a front surface side thereof and having a thermal conductivity of 0.49 W/mK or more; and a rear surface heat dissipation layer made of a copper foil, laminated to a rear surface side of the thermally conductive resin layer 20, and having a thickness of 100 to 400% with respect to the front surface heat dissipation layer 30.
    Type: Grant
    Filed: June 21, 2017
    Date of Patent: November 19, 2019
    Assignee: NIPPON MEKTRON, LTD.
    Inventors: Satoshi Ebihara, Takahisa Kato, Nobuto Sasaki, Kazuyuki Azuma, Tomohiro Shimokawaji, Takeo Wakabayashi
  • Publication number: 20190090345
    Abstract: Provided are both a flexible printed board, in which heat dissipation performance can be improved in without using an aluminum heal dissipating material, which is light in weight, has good processability and can be reduced in cost, and a method for manufacturing such a flexible printed board. The flexible printed board is a flexible printed board 10 on which a power consuming load is mounted, including: a front surface heat dissipation layer 30 made of a copper foil and having a circuit portion on which the load is mounted; a thermally conductive resin layer 20 having the front surface heat dissipation layer 30 laminated to a front surface side thereof and having a thermal conductivity of 0.49 W/mK or more; and a rear surface heat dissipation layer made of a copper foil, laminated to a rear surface side of the thermally conductive resin layer 20, and having a thickness of 100 to 400% with respect to the front surface heat dissipation layer 30.
    Type: Application
    Filed: June 21, 2017
    Publication date: March 21, 2019
    Applicants: NIPPON MEKTRON, LTD., NIPPON MEKTRON, LTD.
    Inventors: Satoshi EBIHARA, Takahisa KATO, Nobuto SASAKI, Kazuyuki AZUMA, Tomohiro SHIMOKAWAJI, Takeo WAKABAYASHI
  • Publication number: 20180362815
    Abstract: The present invention provide an adhesive composition which is suitable for laminating a polyimide film with a copper foil in a double-sided flexible copper-clad laminate to be used for a flexible printed wiring board. The adhesive composition comprises a polyamide-imide resin, an epoxy resin, and a phosphorus-type flame retardant, wherein 15 to 40 parts by mass of the epoxy resin is compounded to 85 to 60 parts by mass of the polyamide-imide resin; a glass transition temperature of the polyamide-imide resin is 250° C. or higher; an acid value of the polyamide-imide resin is 50 to 150 mgKOH/g; the epoxy resin is liquid at 25° C.; 15 to 60 parts by mass of the phosphorus-type flame retardant is compounded to 100 parts by mass in total of the polyamide-imide resin and the epoxy resin; and 50% by mass or more of the phosphorus-type flame retardant is a phosphinic acid derivative of a phenanthrene type.
    Type: Application
    Filed: November 9, 2016
    Publication date: December 20, 2018
    Applicants: TOYOBO CO., LTD., NIPPON MEKTRON, LTD.
    Inventors: Takehisa YANE, Hideyuki KOYANAGI, Manabu OHRUI, Satoshi EBIHARA
  • Publication number: 20170002242
    Abstract: The present invention provides an adhesive composition for a flexible printed wiring board containing (A) an epoxy resin; (B) no phosphorus-containing epoxy resin; and (C) a polyamide-imide resin.
    Type: Application
    Filed: January 5, 2015
    Publication date: January 5, 2017
    Applicants: TOYOBO CO., LTD., NIPPON MEKTRON, LTD.
    Inventors: Takehisa YANE, Hideyuki KOYANAGI, Masami HAMANO, Hisae OBA, Kouji OKANO, Satoshi EBIHARA
  • Patent number: 9244190
    Abstract: Technologies are generally described for transmitting electric power using electromagnetic waves. An example device may include a transmitting unit, a dielectric waveguide, and a receiving unit. The transmitting unit can be configured to transmit the electromagnetic wave through a first waveguide. The dielectric waveguide can be configured to direct the electromagnetic wave from the first waveguide to a second waveguide. Further, the receiving unit can be configured to receive the electromagnetic wave from the dielectric waveguide through the second waveguide. An example borehole radar system may generate an electromagnetic wave from a DC power supply and provide the electromagnetic wave to a power transmitting unit. The power transmitting unit can be configured to transmit the electromagnetic wave through a dielectric waveguide. The electromagnetic wave can be rectified to generate a DC voltage signal, by which a transmitting antenna may be powered to generate a radar signal.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: January 26, 2016
    Assignee: OSAKA ELECTRO-COMMUNICATION UNIVERSITY
    Inventors: Satoshi Ebihara, Kentaro Kawata
  • Publication number: 20140015705
    Abstract: Technologies are generally described for transmitting electric power using electromagnetic waves. An example device may include a transmitting unit, a dielectric waveguide, and a receiving unit. The transmitting unit can be configured to transmit the electromagnetic wave through a first waveguide. The dielectric waveguide can be configured to direct the electromagnetic wave from the first waveguide to a second waveguide. Further, the receiving unit can be configured to receive the electromagnetic wave from the dielectric waveguide through the second waveguide. An example borehole radar system may generate an electromagnetic wave from a DC power supply and provide the electromagnetic wave to a power transmitting unit. The power transmitting unit can be configured to transmit the electromagnetic wave through a dielectric waveguide. The electromagnetic wave can be rectified to generate a DC voltage signal, by which a transmitting antenna may be powered to generate a radar signal.
    Type: Application
    Filed: July 13, 2012
    Publication date: January 16, 2014
    Applicant: OSAKA ELECTRO-COMMUNICATION UNIVERSITY
    Inventors: Satoshi EBIHARA, Kentaro KAWATA
  • Patent number: 7709750
    Abstract: The invention includes a shielding film, which does not have breakage of a metal layer, and has excellent abrasion resistance and blocking resistance, and does not crack. The cover film 7 is provided on one surface of a separation film 6a, and an adhesive layer 8a is formed on the surface of the cover film 7 opposite to the separation film 6a via the metal layer. The cover film 7 has at least one hard layer 7a and at least one soft layer 7b, and the surface of the cover film 7 facing the separation film 6a is composed of the hard layer 7a.
    Type: Grant
    Filed: May 10, 2006
    Date of Patent: May 4, 2010
    Assignees: Tatsuta System Electronics Co, Ltd., Nippon Mektron, Ltd.
    Inventors: Kazuhiro Hashimoto, Syohei Morimoto, Yoshinori Kawakami, Kenji Kamino, Satoshi Ebihara, Hideaki Tanaka, Takahisa Akatsuka
  • Publication number: 20090038839
    Abstract: The invention includes a shielding film, which does not have breakage of a metal layer, and has excellent abrasion resistance and blocking resistance, and does not crack. The cover film 7 is provided on one surface of a separation film 6a, and an adhesive layer 8a is formed on the surface of the cover film 7 opposite to the separation film 6a via the metal layer. The cover film 7 has at least one hard layer 7a and at least one soft layer 7b, and the surface of the cover film 7 facing the separation film 6a is composed of the hard layer 7a.
    Type: Application
    Filed: May 10, 2006
    Publication date: February 12, 2009
    Applicants: TATSUTA SYSTEM ELECTRONICS Co., LTD, NIPPON MEKTRON, LTD
    Inventors: Kazuhiro Hashimoto, Syohei Morimoto, Yoshinori Kawakami, Kenji Kamino, Satoshi Ebihara, Hideaki Tanaka, Takahisa Akatsuka