Patents by Inventor Satoshi Hori

Satoshi Hori has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250002494
    Abstract: The present invention provides a compound having the basic structure shown by Formula (I) in which the indole ring and the pyrazolopyridine structure is bound through a substituent, a salt thereof or a solvate of either the compound or a salt of the compound, as well as a preventative agent or a therapeutic agent for non-insulin-dependent diabetes mellitus (Type 2 diabetes) or obesity containing such compound, salt or solvate as an active ingredient.
    Type: Application
    Filed: August 30, 2024
    Publication date: January 2, 2025
    Applicant: Chugai Seiyaku Kabushiki Kaisha
    Inventors: Hitoshi YOSHINO, Satoshi TSUCHIYA, Atsushi MATSUO, Tsutomu SATO, Masahiro NISHIMOTO, Kyoko OGURI, Hiroko OGAWA, Yoshikazu NISHIMURA, Yoshiyuki FURUTA, Hirotaka KASHIWAGI, Nobuyuki HORI, Takuma KAMON, Takuya SHIRAISHI, Shoshin YOSHIDA, Takahiro KAWAI, Satoshi TANIDA, Masahide AOKI
  • Publication number: 20240408154
    Abstract: Provided is an enhancer of number of TCR clones containing live lactic acid bacteria as an active ingredient. Provided is an enhancer of number of TCR clones, containing live lactic acid bacteria as an active ingredient, wherein after vaccination with CD4 carrying TRBV19 such as vaccination with IEV or a virus carrying an epitope recognized by CD8 positive T cells, the number of TCR clones carrying TRBV19 is enhanced.
    Type: Application
    Filed: October 28, 2022
    Publication date: December 12, 2024
    Applicant: KABUSHIKI KAISHA YAKULT HONSHA
    Inventors: Ayaka MAKI, Tomoaki NAITO, Saya TAJIMA, Tetsuji HORI, Satoshi MATSUMOTO
  • Publication number: 20240377136
    Abstract: The present invention relates to a melting equipment including: two direct-current arc furnaces each including two or more graphite electrodes; a power supply unit including four or more power supply devices; a connection switching unit configured to selectively connect each of the power supply devices to each of the direct-current arc furnaces; and a power supply control unit configured to control power supply from each of the power supply devices to each of the direct-current arc furnaces, in which power supply to only any one of the two direct-current arc furnaces and simultaneous power supply to both direct-current arc furnaces are selectable, and during the simultaneous power supply, power is supplied exceeding 50% of capacities of all the power supply devices to any one of the direct-current arc furnaces.
    Type: Application
    Filed: April 23, 2024
    Publication date: November 14, 2024
    Inventors: Satoshi HORI, Takashi YAMAUCHI, Masayuki SHIRATORI, Shoji KITABAYASHI, Kota MIZUTANI, Masashi KATO
  • Publication number: 20240364831
    Abstract: A function executing device may be configured to receive a related instruction related to execution of a scan from an external device, and in a case where the related instruction is received from the external device via a first communication path for executing an encrypted communication, send an authentication information request to the external device. In a case where the related instruction is received from the external device via a second communication path for executing an unencrypted communication, the function executing device may be configured not to send the authentication information request to the external device.
    Type: Application
    Filed: April 9, 2024
    Publication date: October 31, 2024
    Inventors: Masahiro HAYASHI, Toshikazu HORI, Toshiki MOTOYAMA, Thanh NGUYENVAN, Satoru YANAGI, Akihito UNO, Tomomi SHIRAKI, Satoshi MATSUSHITA, Hiroya NOJIRI, Daisuke MATSUMOTO, Taiga MIZUMORI
  • Publication number: 20240364833
    Abstract: A reading apparatus includes a user interface, a scanner, and a controller configured to perform a push scan that causes the scanner to read a document according to an execution instruction corresponding to an operation on the user interface, and a pull scan that causes the scanner to read the document according to an execution instruction from an external device. The controller is configured to set a restriction setting value relating to a restriction on the push scan, and in a case where the controller receives an execution instruction of the push scan via the user interface, restrict the push scan according to the restriction setting value. In a case where the controller receives an execution instruction of the pull scan, the controller is configured to specify whether authentication is necessary with respect to the execution instruction of the push scan, based on the restriction setting value.
    Type: Application
    Filed: April 23, 2024
    Publication date: October 31, 2024
    Inventors: Toshikazu HORI, Satoshi MATSUSHITA, Hiroya NOJIRI, Satoru YANAGI, Tomomi SHIRAKI, Akihito UNO, Taiga MIZUMORI, Daisuke MATSUMOTO, Toshiki MOTOYAMA, Thanh NGUYENVAN
  • Publication number: 20240361963
    Abstract: A reading system includes a terminal device including a first controller and a storage, and a reading device including a second controller, the reading device being connected to the terminal device and configured to read an object to be read. The storage is configured to store a first program, a second program, and a third program, the first program being an application program corresponding to the reading device, the second program being a general-purpose driver application called from the first program, the third program being a predetermined application program different from the first program and the second program. The second program includes a first mode in which a user interface of the second program is used, and a second mode in which an other user interface that is not the user interface of the second program is used.
    Type: Application
    Filed: April 26, 2024
    Publication date: October 31, 2024
    Applicant: BROTHER KOGYO KABUSHIKI KAISHA
    Inventors: Hiroya NOJIRI, Satoshi MATSUSHITA, Satoru YANAGI, Tomomi SHIRAKI, Akihito UNO, Takashi OHMIYA, Daisuke MATSUMOTO, Katsunori ENOMOTO, Thanh NGUYENVAN, Toshiki MOTOYAMA, Toshikazu HORI
  • Publication number: 20240364835
    Abstract: There is provided a reading apparatus including: a user interface; a communication interface; a scanner; and a controller configured to execute a first scan in response to an instruction to execute the first scan based on an operation to the user interface, and a second scan based on an instruction to execute the second scan from an external apparatus connected to the reading apparatus via the communication interface. The controller is configured to: execute the first scan without requiring authentication in a case where the controller receives, via the user interface, the instruction to execute the first scan; and perform the authentication in a case where the controller receives, via the communication interface, the instruction to execute the second scan, and then execute the second scan in a case where the authentication succeeds and not execute the second scan in a case where the authentication fails.
    Type: Application
    Filed: April 25, 2024
    Publication date: October 31, 2024
    Inventors: DAISUKE MATSUMOTO, TAIGA MIZUMORI, TOSHIKAZU HORI, THANH NGUYENVAN, TOSHIKI MOTOYAMA, SATOSHI MATSUSHITA, HIROYA NOJIRI, SATORU YANAGI, TOMOMI SHIRAKI, AKIHITO UNO
  • Publication number: 20240262824
    Abstract: The present invention provides a compound having the basic structure shown by Formula (I) in which the indole ring and the pyrazolopyridine structure is bound through a substituent, a salt thereof or a solvate of either the compound or a salt of the compound, as well as a preventative agent or a therapeutic agent for non-insulin-dependent diabetes mellitus (Type 2 diabetes) or obesity containing such compound, salt or solvate as an active ingredient.
    Type: Application
    Filed: February 22, 2024
    Publication date: August 8, 2024
    Applicant: Chugai Seiyaku Kabushiki Kaisha
    Inventors: Hitoshi YOSHINO, Satoshi TSUCHIYA, Atsushi MATSUO, Tsutomu SATO, Masahiro NISHIMOTO, Kyoko OGURI, Hiroko OGAWA, Yoshikazu NISHIMURA, Yoshiyuki FURUTA, Hirotaka KASHIWAGI, Nobuyuki HORI, Takuma KAMON, Takuya SHIRAISHI, Shoshin YOSHIDA, Takahiro KAWAI, Satoshi TANIDA, Masahide AOKI
  • Publication number: 20240246971
    Abstract: The present invention provides a compound having the basic structure shown by Formula (I) in which the indole ring and the pyrazolopyridine structure is bound through a substituent, a salt thereof or a solvate of either the compound or a salt of the compound, as well as a preventative agent or a therapeutic agent for non-insulin-dependent diabetes mellitus (Type 2 diabetes) or obesity containing such compound, salt or solvate as an active ingredient.
    Type: Application
    Filed: February 22, 2024
    Publication date: July 25, 2024
    Applicant: Chugai Seiyaku Kabushiki Kaisha
    Inventors: Hitoshi YOSHINO, Satoshi TSUCHIYA, Atsushi MATSUO, Tsutomu SATO, Masahiro NISHIMOTO, Kyoko OGURI, Hiroko OGAWA, Yoshikazu NISHIMURA, Yoshiyuki FURUTA, Hirotaka KASHIWAGI, Nobuyuki HORI, Takuma KAMON, Takuya SHIRAISHI, Shoshin YOSHIDA, Takahiro KAWAI, Satoshi TANIDA, Masahide AOKI
  • Publication number: 20240243351
    Abstract: A main object of the present disclosure is to provide a sulfide solid electrolyte capable of suppressing a decrease in Li ion conductivity due to moisture. The present disclosure achieves the object by providing a sulfide solid electrolyte comprising a Li element, a P element, a S element and an O element, and having a granular shape, and including a crystal portion oriented along the granular shape, on an inner surface of the sulfide solid electrolyte.
    Type: Application
    Filed: March 28, 2024
    Publication date: July 18, 2024
    Applicants: TOKYO INSTITUTE OF TECHNOLOGY, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Ryoji Kanno, Satoshi Hori, Shinya Shiotani
  • Publication number: 20240240324
    Abstract: According to one embodiment, there is provided a carbon hard mask laminated on an etching target film, in which the concentration ratio of a methylene group CH2 and a methyl group CH3 contained in the carbon hard mask satisfies the expression CH2/(CH2+CH3)?0.5.
    Type: Application
    Filed: April 4, 2024
    Publication date: July 18, 2024
    Inventors: Masaru HORI, Makoto SEKINE, Hirotsugu SUGIURA, Tsuyoshi MORIYA, Satoshi TANAKA, Yoshinori MORISADA
  • Publication number: 20240178445
    Abstract: A sulfide solid electrolyte material contains element M1, element M2, element M3 and element S. Element M1 is at least one type selected from the group consisting of Li, Na, K, Mg Ca and Zn, and contains at least one of Li and Na. Element M2 is at least one type selected from the group consisting of P, Sb, Si, Ge, Sn, B, Al, Ga, In, Ti, Zr and V, and contains at least P.
    Type: Application
    Filed: November 24, 2023
    Publication date: May 30, 2024
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, TOKYO INSTITUTE OF TECHNOLOGY
    Inventors: Keiichi MINAMI, Ryoji KANNO, Satoshi HORI
  • Patent number: 11973183
    Abstract: A sulfide solid electrolyte is capable of suppressing a decrease in Li ion conductivity due to moisture. A sulfide solid electrolyte includes a Li element, a P element, a S element and an O element, and having a granular shape, and including a crystal portion oriented along the granular shape, on an inner surface of the sulfide solid electrolyte.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: April 30, 2024
    Assignees: TOKYO INSTITUTE OF TECHNOLOGY, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Ryoji Kanno, Satoshi Hori, Shinya Shiotani
  • Publication number: 20240039042
    Abstract: Disclosed is a solid electrolyte for a solid-state battery having improved water resistance. The solid electrolyte for a solid-state battery includes a sulfide-based solid electrolyte and a LiBr-containing absorbent material, wherein the binding energy of Li1s shows a peak observed at 54.2-56.1 eV, and the binding energy of Br3d shows a peak observed at 67.5-69.5 eV, as determined by X-ray photoelectron spectroscopy (XPS).
    Type: Application
    Filed: April 29, 2022
    Publication date: February 1, 2024
    Inventors: Eiichiro NARIMATSU, Hideyuki MAEDA, Keiko MATSUBARA, Ryoji KANNO, Satoshi HORI
  • Publication number: 20230253613
    Abstract: A main object of the present disclosure is to provide a sulfide solid electrolyte with excellent water resistance. The present disclosure achieves the object by providing a sulfide solid electrolyte including a LGPS type crystal phase, and containing Li, Ge, P, and S, wherein: when an X-ray photoelectron spectroscopy measurement is conducted to a surface of the sulfide solid electrolyte, a proportion of Ge2+ with respect to total amount of Ge is 20% or more.
    Type: Application
    Filed: October 3, 2022
    Publication date: August 10, 2023
    Applicants: Tokyo Institute of Technology, Toyota Jidosha Kabushiki Kaisha
    Inventors: Ryoji KANNO, Satoshi HORI, Keiichi MINAMI, Shinya SHIOTANI
  • Patent number: 11152641
    Abstract: Provided is a sulfide solid electrolyte material which has a composition that does not contain Ge, while having a smaller Li content than conventional sulfide solid electrolyte materials, and which has both lithium ion conductivity and chemical stability at the same time. A sulfide solid electrolyte which has a crystal structure represented by composition formula (Li3.45+??4?Sn?)(Si0.36Sn0.09)(P0.55??Si?)S4 (wherein ??0.67, ??0.33 and 0.43<?+? (provided that 0.23<??0.4 when ?=0.2 and 0.13<??0.4 when ?=0.3 may be excluded)), or a crystal structure represented by composition formula Li7+?Si?P1??S6 (wherein 0.1??<0.3).
    Type: Grant
    Filed: August 23, 2017
    Date of Patent: October 19, 2021
    Assignee: Tokyo Institute of Technology
    Inventors: Ryoji Kanno, Masaaki Hirayama, Kota Suzuki, Yulong Sun, Satoshi Hori
  • Publication number: 20210242491
    Abstract: A sulfide solid electrolyte is capable of suppressing a decrease in Li ion conductivity due to moisture. A sulfide solid electrolyte includes a Li element, a P element, a S element and an O element, and having a granular shape, and including a crystal portion oriented along the granular shape, on an inner surface of the sulfide solid electrolyte.
    Type: Application
    Filed: March 1, 2019
    Publication date: August 5, 2021
    Applicants: TOKYO INSTITUTE OF TECHNOLOGY, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Ryoji KANNO, Satoshi HORI, Shinya SHIOTANI
  • Patent number: 10897059
    Abstract: The problem of the present invention is to provide a sulfide solid electrolyte material with favorable reduction resistance. The present invention solves the problem by providing a sulfide solid electrolyte material having a peak at a position of 2?=30.26°±1.00° in X-ray diffraction measurement using a CuK? ray, and having a composition of Li(4?x?4y)Si(1?x+y)P(x)S(4?2a?z)O(2a+z) (a=1?x+y, 0.65?x?0.75, ?0.025?y?0.1, ?0.2?z?0).
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: January 19, 2021
    Assignees: TOKYO INSTITUTE OF TECHNOLOGY, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Ryoji Kanno, Satoshi Hori, Yuki Kato
  • Patent number: 10741299
    Abstract: (Problem to be Solved) The present invention was made in view of the above-described problems, with an object of providing a Li—P—S-based sulfide solid electrolyte material with both excellent electrochemical stability and a high lithium ion conductivity, providing a method of producing the Li—P—S-based sulfide solid electrolyte material, and providing a lithium battery including the sulfide solid electrolyte material. (Solution) There is provided a sulfide solid electrolyte material including a Li element, a P element, and a S element and having peaks at positions of 2?=17.90±0.20, 29.0±0.50, and 29.75±0.25? in powder X-ray diffraction measurement using a Cu-K? ray having an X-ray wavelength of 1.5418 ?, in which assuming that the diffraction intensity of the peak at 2?=17.90±0.20 is IA and the diffraction intensity of the peak at 2?=18.50±0.20 is IB, a value of IB/IA is less than 0.50.
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: August 11, 2020
    Assignees: Tokyo Insititute of Technology, Toyota Jidosha Kabushiki Kaisha
    Inventors: Ryoji Kanno, Satoshi Hori
  • Patent number: 10461363
    Abstract: A sulfide solid electrolyte material has favorable ion conductivity and resistance to reduction. The sulfide solid electrolyte material includes a peak at a position of 2?=29.86°±1.00° in X-ray diffraction measurement using a CuK? ray, and a composition of Li2y+3PS4 (0.1?y?0.175).
    Type: Grant
    Filed: June 8, 2015
    Date of Patent: October 29, 2019
    Assignees: TOKYO INSTITUTE OF TECHNOLOGY, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Ryoji Kanno, Masaaki Hirayama, Kota Suzuki, Satoshi Hori, Yuki Kato