Patents by Inventor Satoshi Hori

Satoshi Hori has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250059245
    Abstract: Provided is a nucleic acid structure which enhances an antigen-specific immune response. The nucleic acid structure comprises a polynucleotide encoding a SNARE protein, a polynucleotide encoding a proprotein convertase recognition sequence, and a polynucleotide encoding an antigen, wherein the polynucleotide encoding a SNARE protein and the polynucleotide encoding an antigen are linked via the polynucleotide encoding a proprotein convertase recognition sequence.
    Type: Application
    Filed: August 5, 2022
    Publication date: February 20, 2025
    Applicant: Kao Corporation
    Inventors: Keimon SAYAMA, Takaya SUGANUMA, Satoshi HORI, Shun KUBO, Masaki YAMAMOTO, Satoko FUKAGAWA, Junko ISHIKAWA
  • Publication number: 20250049913
    Abstract: Provided is a nucleic acid structure which enhances an allergen-specific immune response. The nucleic acid structure comprises a polynucleotide encoding a SNARE protein and a polynucleotide encoding an allergen.
    Type: Application
    Filed: August 5, 2022
    Publication date: February 13, 2025
    Applicant: Kao Corporation
    Inventors: Keimon SAYAMA, Takaya SUGANUMA, Satoshi HORI, Shun KUBO, Masaki YAMAMOTO, Satoko FUKAGAWA, Junko ISHIKAWA
  • Publication number: 20250049905
    Abstract: Provided is a nucleic acid structure which enhances an antigen-specific immune response. The nucleic acid structure comprises a polynucleotide encoding a SNARE protein selected from the group consisting of VAMP7, GOSR2, STX10, STX18, BNIP1, STX7, VTI1A, STX16, STX5, GOSR1, STX8, STX12, VAMP8 and SEC22B, and a polynucleotide encoding an antigen.
    Type: Application
    Filed: August 5, 2022
    Publication date: February 13, 2025
    Applicant: Kao Corporation
    Inventors: Keimon SAYAMA, Takaya SUGANUMA, Satoshi HORI, Shun KUBO, Masaki YAMAMOTO, Satoko FUKAGAWA, Junko ISHIKAWA
  • Patent number: 12215882
    Abstract: An air conditioner system (1) runs in a concentration keeping mode to sequentially repeat a first operation of lowering a target temperature to a first target temperature lower than a predetermined reference temperature and a second operation of raising the target temperature to a second target temperature higher than the reference temperature. The target temperature is gradually raised from the first target temperature to the second target temperature in the second operation. Lowering the target temperature to the first target temperature in the first operation takes shorter time than raising the target temperature to the second target temperature in the second operation.
    Type: Grant
    Filed: September 10, 2021
    Date of Patent: February 4, 2025
    Assignee: DAIKIN INDUSTRIES, LTD.
    Inventors: Youko Sakata, Shouta Hori, Satoshi Hashimoto
  • Publication number: 20250039310
    Abstract: Provided is an image processing system including an image processing device and a computer. The image processing device and the computer are connected to a network. The computer has capability of performing data communication using a first communication or a second communication different from the first communication. The image processing device is configured to perform data communication in accordance with at least the first communication. The computer includes a controller configured to retrieve capability information stored in a capability information repository of the image processing device and determine whether the capability information includes second communication implementation information.
    Type: Application
    Filed: July 25, 2024
    Publication date: January 30, 2025
    Inventors: Taiga MIZUMORI, Daisuke MATSUMOTO, Thanh NGUYENVAN, Toshikazu HORI, Toshiki MOTOYAMA, Satoshi MATSUSHITA, Hiroya NOJIRI, Satoru YANAGI, Tomomi SHIRAKI, Akihito UNO
  • Publication number: 20240377136
    Abstract: The present invention relates to a melting equipment including: two direct-current arc furnaces each including two or more graphite electrodes; a power supply unit including four or more power supply devices; a connection switching unit configured to selectively connect each of the power supply devices to each of the direct-current arc furnaces; and a power supply control unit configured to control power supply from each of the power supply devices to each of the direct-current arc furnaces, in which power supply to only any one of the two direct-current arc furnaces and simultaneous power supply to both direct-current arc furnaces are selectable, and during the simultaneous power supply, power is supplied exceeding 50% of capacities of all the power supply devices to any one of the direct-current arc furnaces.
    Type: Application
    Filed: April 23, 2024
    Publication date: November 14, 2024
    Inventors: Satoshi HORI, Takashi YAMAUCHI, Masayuki SHIRATORI, Shoji KITABAYASHI, Kota MIZUTANI, Masashi KATO
  • Publication number: 20240243351
    Abstract: A main object of the present disclosure is to provide a sulfide solid electrolyte capable of suppressing a decrease in Li ion conductivity due to moisture. The present disclosure achieves the object by providing a sulfide solid electrolyte comprising a Li element, a P element, a S element and an O element, and having a granular shape, and including a crystal portion oriented along the granular shape, on an inner surface of the sulfide solid electrolyte.
    Type: Application
    Filed: March 28, 2024
    Publication date: July 18, 2024
    Applicants: TOKYO INSTITUTE OF TECHNOLOGY, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Ryoji Kanno, Satoshi Hori, Shinya Shiotani
  • Publication number: 20240178445
    Abstract: A sulfide solid electrolyte material contains element M1, element M2, element M3 and element S. Element M1 is at least one type selected from the group consisting of Li, Na, K, Mg Ca and Zn, and contains at least one of Li and Na. Element M2 is at least one type selected from the group consisting of P, Sb, Si, Ge, Sn, B, Al, Ga, In, Ti, Zr and V, and contains at least P.
    Type: Application
    Filed: November 24, 2023
    Publication date: May 30, 2024
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, TOKYO INSTITUTE OF TECHNOLOGY
    Inventors: Keiichi MINAMI, Ryoji KANNO, Satoshi HORI
  • Patent number: 11973183
    Abstract: A sulfide solid electrolyte is capable of suppressing a decrease in Li ion conductivity due to moisture. A sulfide solid electrolyte includes a Li element, a P element, a S element and an O element, and having a granular shape, and including a crystal portion oriented along the granular shape, on an inner surface of the sulfide solid electrolyte.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: April 30, 2024
    Assignees: TOKYO INSTITUTE OF TECHNOLOGY, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Ryoji Kanno, Satoshi Hori, Shinya Shiotani
  • Publication number: 20240039042
    Abstract: Disclosed is a solid electrolyte for a solid-state battery having improved water resistance. The solid electrolyte for a solid-state battery includes a sulfide-based solid electrolyte and a LiBr-containing absorbent material, wherein the binding energy of Li1s shows a peak observed at 54.2-56.1 eV, and the binding energy of Br3d shows a peak observed at 67.5-69.5 eV, as determined by X-ray photoelectron spectroscopy (XPS).
    Type: Application
    Filed: April 29, 2022
    Publication date: February 1, 2024
    Inventors: Eiichiro NARIMATSU, Hideyuki MAEDA, Keiko MATSUBARA, Ryoji KANNO, Satoshi HORI
  • Publication number: 20230253613
    Abstract: A main object of the present disclosure is to provide a sulfide solid electrolyte with excellent water resistance. The present disclosure achieves the object by providing a sulfide solid electrolyte including a LGPS type crystal phase, and containing Li, Ge, P, and S, wherein: when an X-ray photoelectron spectroscopy measurement is conducted to a surface of the sulfide solid electrolyte, a proportion of Ge2+ with respect to total amount of Ge is 20% or more.
    Type: Application
    Filed: October 3, 2022
    Publication date: August 10, 2023
    Applicants: Tokyo Institute of Technology, Toyota Jidosha Kabushiki Kaisha
    Inventors: Ryoji KANNO, Satoshi HORI, Keiichi MINAMI, Shinya SHIOTANI
  • Patent number: 11152641
    Abstract: Provided is a sulfide solid electrolyte material which has a composition that does not contain Ge, while having a smaller Li content than conventional sulfide solid electrolyte materials, and which has both lithium ion conductivity and chemical stability at the same time. A sulfide solid electrolyte which has a crystal structure represented by composition formula (Li3.45+??4?Sn?)(Si0.36Sn0.09)(P0.55??Si?)S4 (wherein ??0.67, ??0.33 and 0.43<?+? (provided that 0.23<??0.4 when ?=0.2 and 0.13<??0.4 when ?=0.3 may be excluded)), or a crystal structure represented by composition formula Li7+?Si?P1??S6 (wherein 0.1??<0.3).
    Type: Grant
    Filed: August 23, 2017
    Date of Patent: October 19, 2021
    Assignee: Tokyo Institute of Technology
    Inventors: Ryoji Kanno, Masaaki Hirayama, Kota Suzuki, Yulong Sun, Satoshi Hori
  • Publication number: 20210242491
    Abstract: A sulfide solid electrolyte is capable of suppressing a decrease in Li ion conductivity due to moisture. A sulfide solid electrolyte includes a Li element, a P element, a S element and an O element, and having a granular shape, and including a crystal portion oriented along the granular shape, on an inner surface of the sulfide solid electrolyte.
    Type: Application
    Filed: March 1, 2019
    Publication date: August 5, 2021
    Applicants: TOKYO INSTITUTE OF TECHNOLOGY, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Ryoji KANNO, Satoshi HORI, Shinya SHIOTANI
  • Patent number: 10897059
    Abstract: The problem of the present invention is to provide a sulfide solid electrolyte material with favorable reduction resistance. The present invention solves the problem by providing a sulfide solid electrolyte material having a peak at a position of 2?=30.26°±1.00° in X-ray diffraction measurement using a CuK? ray, and having a composition of Li(4?x?4y)Si(1?x+y)P(x)S(4?2a?z)O(2a+z) (a=1?x+y, 0.65?x?0.75, ?0.025?y?0.1, ?0.2?z?0).
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: January 19, 2021
    Assignees: TOKYO INSTITUTE OF TECHNOLOGY, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Ryoji Kanno, Satoshi Hori, Yuki Kato
  • Patent number: 10741299
    Abstract: (Problem to be Solved) The present invention was made in view of the above-described problems, with an object of providing a Li—P—S-based sulfide solid electrolyte material with both excellent electrochemical stability and a high lithium ion conductivity, providing a method of producing the Li—P—S-based sulfide solid electrolyte material, and providing a lithium battery including the sulfide solid electrolyte material. (Solution) There is provided a sulfide solid electrolyte material including a Li element, a P element, and a S element and having peaks at positions of 2?=17.90±0.20, 29.0±0.50, and 29.75±0.25? in powder X-ray diffraction measurement using a Cu-K? ray having an X-ray wavelength of 1.5418 ?, in which assuming that the diffraction intensity of the peak at 2?=17.90±0.20 is IA and the diffraction intensity of the peak at 2?=18.50±0.20 is IB, a value of IB/IA is less than 0.50.
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: August 11, 2020
    Assignees: Tokyo Insititute of Technology, Toyota Jidosha Kabushiki Kaisha
    Inventors: Ryoji Kanno, Satoshi Hori
  • Patent number: 10461363
    Abstract: A sulfide solid electrolyte material has favorable ion conductivity and resistance to reduction. The sulfide solid electrolyte material includes a peak at a position of 2?=29.86°±1.00° in X-ray diffraction measurement using a CuK? ray, and a composition of Li2y+3PS4 (0.1?y?0.175).
    Type: Grant
    Filed: June 8, 2015
    Date of Patent: October 29, 2019
    Assignees: TOKYO INSTITUTE OF TECHNOLOGY, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Ryoji Kanno, Masaaki Hirayama, Kota Suzuki, Satoshi Hori, Yuki Kato
  • Patent number: 10403933
    Abstract: In order to improve the stability of an electrolyte, an object of the present disclosure is to develop, among the sulfide solid electrolytes of Li—P—S—O based containing no metal element other than lithium, a new solid electrolyte having a possibility to have high ion conductivity and a method for producing for obtaining the same easily. The present disclosure achieves the object by providing a solid electrolyte material including a sulfide composition represented by a composition formula Li4-4y-xP4+1+y-xP5+xS4-zOz (Li4-4y-xP1+yS4-zOz), wherein 0.6?x<1, 0?z?0.2, and ?0.025?y?0.1, and a method for producing the same.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: September 3, 2019
    Assignees: TOKYO INSTITUTE OF TECHNOLOGY, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Ryoji Kanno, Satoshi Hori
  • Patent number: 10396395
    Abstract: To improve the stability of an electrolyte, among the sulfide solid electrolytes of Li—P—S—X based (X is at least one of F, Cl, N and OH) containing no metal element other than lithium, a new solid electrolyte having a possibility to have high ion conductivity and a method for producing for obtaining the same easily. The disclosure achieves the object by providing a solid electrolyte material including a sulfide composition represented by a composition formula Li4?4y?x?zP4+1+y?xP5+xS4?zXz (Li4?4y?x?zP1+yS4?zXz), wherein 0.2?x<1.0, 0?z?0.2, and 0?y?0.075, and X is at least one of F, Cl, N and OH, and the solid electrolyte material has a peak at a position of 2?=17.8°±0.1°, 19.1°±0.1°, 21.7°±0.1°, 23.8°±0.1° and 30.85°±0.1° in X-ray diffraction measurement using a CuK? ray, and method for producing the same.
    Type: Grant
    Filed: March 27, 2018
    Date of Patent: August 27, 2019
    Assignees: TOKYO INSTITUTE OF TECHNOLOGY, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Ryoji Kanno, Satoshi Hori
  • Publication number: 20190237801
    Abstract: Provided is a sulfide solid electrolyte material which has a composition that does not contain Ge, while having a smaller Li content than conventional sulfide solid electrolyte materials, and which has both lithium ion conductivity and chemical stability at the same time. A sulfide solid electrolyte which has a crystal structure represented by composition formula (Li3.45+??4?Sn?)(Si0.36Sn0.09)(P0.55??Si?)S4 (wherein ??0.67, ??0.33 and 0.43<?+? (provided that 0.23<??0.4 when ?=0.2 and 0.13<??0.4 when ?=0.3 may be excluded)), or a crystal structure represented by composition formula Li7+?Si?P1??S6 (wherein 0.1??<0.3).
    Type: Application
    Filed: August 23, 2017
    Publication date: August 1, 2019
    Applicant: Tokyo Institute of Technology
    Inventors: Ryoji KANNO, Masaaki HIRAYAMA, Kota SUZUKI, Yulong SUN, Satoshi HORI
  • Publication number: 20180287204
    Abstract: To improve the stability of an electrolyte, among the sulfide solid electrolytes of Li—P—S—X based (X is at least one of F, Cl, N and OH) containing no metal element other than lithium, a new solid electrolyte having a possibility to have high ion conductivity and a method for producing for obtaining the same easily. The disclosure achieves the object by providing a solid electrolyte material including a sulfide composition represented by a composition formula Li4?4y?x?zP4+1+y?xP5+xS4?zXz (Li4?4y?x?zP1+yS4?zXz), wherein 0.2?x<1.0, 0?z?0.2, and 0?y?0.075, and X is at least one of F, Cl, N and OH, and the solid electrolyte material has a peak at a position of 2?=17.8°±0.1°, 19.1°±0.1°, 21.7°±0.1°, 23.8°±0.1° and 30.85°±0.1° in X-ray diffraction measurement using a CuK? ray, and method for producing the same.
    Type: Application
    Filed: March 27, 2018
    Publication date: October 4, 2018
    Applicants: TOKYO INSTITUTE OF TECHNOLOGY, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Ryoji KANNO, Satoshi HORI