Patents by Inventor Satoshi Inagaki
Satoshi Inagaki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11485644Abstract: Provided are the following: an MWW type zeolite which has many Brønsted acid sites when in the form of a proton type and which is highly suitable as a cracking catalyst for cumene; a method for producing same; and an application of same. The present invention provides an MWW type zeolite in which the ratio (B/A) of the peak intensity (B) attributable to tetracoordinate aluminum relative to the peak intensity (A) attributable to hexacoordinate aluminum is 2 or more in 27Al MAS NMR, when measured as an ammonium type. The present invention also provides a method for producing an MWW type zeolite, the method having a step for carrying out a hydrothermal synthesis reaction in the presence of: a seed crystal of an MWW type zeolite containing no organic structure-directing agent; and a reaction mixture containing a silica source, an alumina source, an alkali source, an organic structure-directing agent, and water. The reaction mixture satisfies the following molar ratio: X/SiO2<0.Type: GrantFiled: November 28, 2018Date of Patent: November 1, 2022Assignees: Mitsui Mining & Smelting Co., Ltd., NATIONAL UNIVERSITY CORPORATION TOTTORI UNIVERSITY, NATIONAL UNIVERSITY CORPORATION YOKOHAMA NATIONAL UNIVERSITYInventors: Yoshihiro Kamimura, Akira Endou, Yasuo Yamazaki, Naonobu Katada, Satoshi Suganuma, Yoshihiro Kubota, Satoshi Inagaki
-
Patent number: 11447396Abstract: Provided are the following: an MWW type zeolite which has many Brønsted acid sites when in the form of a proton type and which is highly suitable as a cracking catalyst for cumene; a method for producing same; and an application of same. The present invention provides an MWW type zeolite in which the ratio (B/A) of the peak intensity (B) attributable to tetracoordinate aluminum relative to the peak intensity (A) attributable to hexacoordinate aluminum is 2 or more in 27Al MAS NMR, when measured as an ammonium type. The present invention also provides a method for producing an MWW type zeolite, the method having a step for carrying out a hydrothermal synthesis reaction in the presence of: a seed crystal of an MWW type zeolite containing no organic structure-directing agent; and a reaction mixture containing a silica source, an alumina source, an alkali source, an organic structure-directing agent, and water. The reaction mixture satisfies the following molar ratio: X/SiO2<0.Type: GrantFiled: November 28, 2018Date of Patent: September 20, 2022Assignees: Mitsui Mining & Smelting Co., Ltd., NATIONAL UNIVERSITY CORPORATION TOTTORI UNIVERSITY, NATIONAL UNIVERSITY CORPORATION YOKOHAMA NATIONAL UNIVERSITYInventors: Yoshihiro Kamimura, Akira Endou, Yasuo Yamazaki, Naonobu Katada, Satoshi Suganuma, Yoshihiro Kubota, Satoshi Inagaki
-
Patent number: 11378936Abstract: A control device controls a mechanical device having a movable member driven by a motor. The control device includes a radio signal exchange unit that receives a sensor signal indicating a position, a velocity or an acceleration of a tip part of the movable member, a data acquisition unit that acquires first time-series data of acceleration based on the received sensor signal, a data calculation unit that calculates second time-series data of acceleration at the tip part based on a drive command to the motor, a delay time calculation unit that calculates, when the mechanical device performs a predetermined basic operation, a delay time of the first time-series data to the second time-series data, based on a degree of correlation between the first and second time-series data, and a time synchronization unit that synchronizes time of the sensor part and control device based on the delay time.Type: GrantFiled: April 15, 2020Date of Patent: July 5, 2022Assignee: FANUC CORPORATIONInventors: Satoshi Inagaki, Hajime Suzuki
-
Publication number: 20220136094Abstract: A mask structure for a deposition device includes first segments and second segments. The first segments are arranged in a direction surrounding a central axis and separated from one another. The second segments are disposed above the first segments. Each of the second segments overlaps two of the first segments adjacent to each other in a vertical direction parallel to an extending direction of the central axis. A deposition device includes a process chamber, a stage, and the mask structure. The stage is at least partially disposed in the process chamber and includes a holding structure of a substrate. The mask structure is disposed in the process chamber, located over the stage, and covers a peripheral region of the substrate to be held on the stage. An operation method of the deposition device includes horizontally adjusting positions of the first segments and the second segments respectively between different deposition processes.Type: ApplicationFiled: January 12, 2022Publication date: May 5, 2022Applicant: United Semiconductor Japan Co., Ltd.Inventor: Satoshi Inagaki
-
Publication number: 20220081755Abstract: A mask structure for a deposition device includes first segments and second segments. The first segments are arranged in a direction surrounding a central axis and separated from one another. The second segments are disposed above the first segments. Each of the second segments overlaps two of the first segments adjacent to each other in a vertical direction parallel to an extending direction of the central axis. A deposition device includes a process chamber, a stage, and the mask structure. The stage is at least partially disposed in the process chamber and includes a holding structure of a substrate. The mask structure is disposed in the process chamber, located over the stage, and covers a peripheral region of the substrate to be held on the stage. An operation method of the deposition device includes horizontally adjusting positions of the first segments and the second segments respectively between different deposition processes.Type: ApplicationFiled: September 17, 2020Publication date: March 17, 2022Inventor: Satoshi Inagaki
-
Patent number: 11255011Abstract: A mask structure for a deposition device includes first segments and second segments. The first segments are arranged in a direction surrounding a central axis and separated from one another. The second segments are disposed above the first segments. Each of the second segments overlaps two of the first segments adjacent to each other in a vertical direction parallel to an extending direction of the central axis. A deposition device includes a process chamber, a stage, and the mask structure. The stage is at least partially disposed in the process chamber and includes a holding structure of a substrate. The mask structure is disposed in the process chamber, located over the stage, and covers a peripheral region of the substrate to be held on the stage. An operation method of the deposition device includes horizontally adjusting positions of the first segments and the second segments respectively between different deposition processes.Type: GrantFiled: September 17, 2020Date of Patent: February 22, 2022Assignee: United Semiconductor Japan Co., Ltd.Inventor: Satoshi Inagaki
-
Patent number: 11230003Abstract: A robot system includes: a learning control unit configured to perform learning for calculating a learning correction amount for bringing a position of a control target portion toward a target position; a robot control unit configured to control the operation of the robot mechanism unit; a power spectrum calculating unit configured to calculate a power spectrum of a vibration data of the control target portion; a comparison unit configured to compare each power spectrum between at the time of the current learning and at the time of the immediately preceding learning; and a learning correction amount updating unit configured to adjust at least one of a phase and a gain of the learning correction amount used at the time of the current learning to set the adjusted learning correction amount as a new learning correction amount used at the time of next learning.Type: GrantFiled: June 19, 2019Date of Patent: January 25, 2022Assignee: FANUC CORPORATIONInventors: Satoshi Inagaki, Hajime Suzuki
-
Patent number: 11142464Abstract: Provided is a beta zeolite also having exceptional catalytic activity as a catalyst other than an olefin epoxidation catalyst. This beta zeolite is synthesized without using an organic structure-directing agent and has titanium in the structural skeleton thereof, the Ti content being 0.10 mmol/g or higher. This beta zeolite preferably has an Si/Ti molar ratio of 20-200. Also, the Si/Al molar ratio is preferably 100 or higher.Type: GrantFiled: October 25, 2018Date of Patent: October 12, 2021Assignees: Mitsui Mining & Smelting Co., Ltd., NATIONAL UNIVERSITY CORPORATION YOKOHAMA NATIONAL UNIVERSITYInventors: Yoshihiro Kubota, Satoshi Inagaki, Yuya Ikehara, Mei Takeyama, Yasuo Yamazaki
-
Publication number: 20210229085Abstract: There are provided a method for manufacturing a modified aluminosilicate by which a hydroquinone is highly selectively manufactured by reaction of a phenol with hydrogen peroxide, a modified aluminosilicate, and a method for manufacturing an aromatic dihydroxy compound by using the modified aluminosilicate, under industrially advantageous conditions. The method for manufacturing a modified aluminosilicate of the present invention includes a first step of treating an aluminosilicate with an acid, a second step of primarily calcining the treated material obtained in the first step at 550° C. to 850° C., and a third step of contacting the calcined material obtained in the second step with a liquid. containing one or more elements selected from the group consisting of Group 4 elements and. Group 5 elements on. the periodic table, and then drying and secondarily calcining the resultant. The modified aluminosilicate included in the present invention.Type: ApplicationFiled: May 20, 2019Publication date: July 29, 2021Inventors: Yoshiya MATSUKAWA, Nobuhiko HORIUCHI, Akihiro OKABE, Yoshihiro KUBOTA, Satoshi INAGAKI
-
Patent number: 11065606Abstract: The purpose of the present invention is to provide a metal-substituted beta zeolite that exhibits a more excellent catalytic performance than conventional one, and a method for producing the same. The present invention provides a metal-substituted beta zeolite by subjecting an alkali metal-form beta zeolite produced without using an organic structure-directing agent to ion exchange with ammonium ion and then, using a filter cake procedure, to ion exchange with copper ion or iron(II) ion. The present invention also provides a metal-substituted beta zeolite which has been ion exchanged with copper ion or iron(II) ion and in which the amount of Lewis acid sites is greater than the amount of Bronsted acid sites when the amount of Bronsted acid sites and the amount of Lewis acid sites are measured by ammonia infrared-mass spectroscopy temperature-programmed desorption on the as-produced state.Type: GrantFiled: October 25, 2018Date of Patent: July 20, 2021Assignees: Mitsui Mining & Smelting Co., Ltd., NATIONAL UNIVERSITY CORPORATION TOTTORI UNIVERSITY, NATIONAL UNIVERSITY CORPORATION YOKOHAMA NATIONAL UNIVERSITYInventors: Yoshihiro Kubota, Satoshi Inagaki, Naonobu Katada, Satoshi Suganuma, Yasuo Yamazaki, Takahiro Kogawa
-
Patent number: 10960549Abstract: A vibration analyzer includes a sensor that measures a vibration of an end effector supported by a distal end of a robot, a storage unit that stores a vibration calculation model of the robot, and a control unit configured to perform separation processing for separating a vibration to be reduced that is measured by the sensor into vibration data of the robot and vibration data of the end effector by using the vibration calculation model of the robot.Type: GrantFiled: February 5, 2019Date of Patent: March 30, 2021Assignee: FANUC CORPORATIONInventors: Satoshi Inagaki, Hajime Suzuki
-
Publication number: 20210002140Abstract: Provided are the following: an MWW type zeolite which has many Brønsted acid sites when in the form of a proton type and which is highly suitable as a cracking catalyst for cumene; a method for producing same; and an application of same. The present invention provides an MWW type zeolite in which the ratio (B/A) of the peak intensity (B) attributable to tetracoordinate aluminum relative to the peak intensity (A) attributable to hexacoordinate aluminum is 2 or more in 27Al MAS NMR, when measured as an ammonium type. The present invention also provides a method for producing an MWW type zeolite, the method having a step for carrying out a hydrothermal synthesis reaction in the presence of: a seed crystal of an MWW type zeolite containing no organic structure-directing agent; and a reaction mixture containing a silica source, an alumina source, an alkali source, an organic structure-directing agent, and water. The reaction mixture satisfies the following molar ratio: X/SiO2<0.Type: ApplicationFiled: November 28, 2018Publication date: January 7, 2021Inventors: Yoshihiro KAMIMURA, Akira ENDOU, Yasuo YAMAZAKI, Naonobu KATADA, Satoshi SUGANUMA, Yoshihiro KUBOTA, Satoshi INAGAKI
-
Publication number: 20200379441Abstract: A control device controls a mechanical device having a movable member driven by a motor. The control device includes a radio signal exchange unit that receives a sensor signal indicating a position, a velocity or an acceleration of a tip part of the movable member, a data acquisition unit that acquires first time-series data of acceleration based on the received sensor signal, a data calculation unit that calculates second time-series data of acceleration at the tip part based on a drive command to the motor, a delay time calculation unit that calculates, when the mechanical device performs a predetermined basic operation, a delay time of the first time-series data to the second time-series data, based on a degree of correlation between the first and second time-series data, and a time synchronization unit that synchronizes time of the sensor part and control device based on the delay time.Type: ApplicationFiled: April 15, 2020Publication date: December 3, 2020Inventors: Satoshi INAGAKI, Hajime SUZUKI
-
Publication number: 20200338539Abstract: The purpose of the present invention is to provide a metal-substituted beta zeolite that exhibits a more excellent catalytic performance than conventional one, and a method for producing the same. The present invention provides a metal-substituted beta zeolite by subjecting an alkali metal-form beta zeolite produced without using an organic structure-directing agent to ion exchange with ammonium ion and then, using a filter cake procedure, to ion exchange with copper ion or iron(II) ion. The present invention also provides a metal-substituted beta zeolite which has been ion exchanged with copper ion or iron(II) ion and in which the amount of Lewis acid sites is greater than the amount of Bronsted acid sites when the amount of Bronsted acid sites and the amount of Lewis acid sites are measured by ammonia infrared-mass spectroscopy temperature-programmed desorption on the as-produced state.Type: ApplicationFiled: October 25, 2018Publication date: October 29, 2020Inventors: Yoshihiro KUBOTA, Satoshi INAGAKI, Naonobu KATADA, Satoshi SUGANUMA, Yasuo YAMAZAKI, Takahiro KOGAWA
-
Publication number: 20200339431Abstract: Provided is a beta zeolite also having exceptional catalytic activity as a catalyst other than an olefin epoxidation catalyst. This beta zeolite is synthesized without using an organic structure-directing agent and has titanium in the structural skeleton thereof, the Ti content being 0.10 mmol/g or higher. This beta zeolite preferably has an Si/Ti molar ratio of 20-200. Also, the Si/Al molar ratio is preferably 100 or higher.Type: ApplicationFiled: October 25, 2018Publication date: October 29, 2020Inventors: Yoshihiro KUBOTA, Satoshi INAGAKI, Yuya IKEHARA, Mei TAKEYAMA, Yasuo YAMAZAKI
-
Publication number: 20200171654Abstract: A robot system includes: a learning control unit configured to perform learning for calculating a learning correction amount for bringing a position of a control target portion toward a target position; a robot control unit configured to control the operation of the robot mechanism unit; a power spectrum calculating unit configured to calculate a power spectrum of a vibration data of the control target portion; a comparison unit configured to compare each power spectrum between at the time of the current learning and at the time of the immediately preceding learning; and a learning correction amount updating unit configured to adjust at least one of a phase and a gain of the learning correction amount used at the time of the current learning to set the adjusted learning correction amount as a new learning correction amount used at the time of next learning.Type: ApplicationFiled: June 19, 2019Publication date: June 4, 2020Inventors: Satoshi INAGAKI, Hajime SUZUKI
-
Patent number: 10618164Abstract: A robot system is provide with a robot control device that includes an operation control unit and a learning control unit. The learning control unit performs a learning control in which a vibration correction amount for correcting a vibration generated at a control target portion of a robot is calculated and the vibration correction amount is employed in the operation command at a next time. The learning control unit includes a plurality of learning control parts for calculating the vibration correction amount and a selection unit that selects one of the plurality of learning control parts on the basis of operation information of the robot when the robot is made to be operated by an operation program that is a target of the learning control.Type: GrantFiled: February 9, 2018Date of Patent: April 14, 2020Assignee: FANUC CORPORATIONInventors: Kaimeng Wang, Satoshi Inagaki, Wenjie Chen
-
Patent number: 10507581Abstract: A robot system includes: at least one non-learned robot that has not learned a learning compensation amount of position control based on an operation command; at least one learned robot that has learned the learning compensation amount of the position control based on the operation command; and a storage device that stores the operation command and the learning compensation amount of the learned robot, the non-learned robot comprising a compensation amount estimation unit that compensates the learning compensation amount of the learned robot stored in the storage device based on a difference between the operation command of the learned robot stored in the storage device and an operation command of an own robot, and estimates the compensated learning compensation amount as a learning compensation amount of the own robot.Type: GrantFiled: August 3, 2018Date of Patent: December 17, 2019Assignee: FANUC CORPORATIONInventors: Satoshi Inagaki, Wenjie Chen, Kaimeng Wang
-
Publication number: 20190255709Abstract: A vibration analyzer includes a sensor that measures a vibration of an end effector supported by a distal end of a robot, a storage unit that stores a vibration calculation model of the robot, and a control unit configured to perform separation processing for separating a vibration to be reduced that is measured by the sensor into vibration data of the robot and vibration data of the end effector by using the vibration calculation model of the robot.Type: ApplicationFiled: February 5, 2019Publication date: August 22, 2019Applicant: Fanuc CorporationInventors: Satoshi INAGAKI, Hajime SUZUKI
-
Publication number: 20190061149Abstract: A robot system includes: at least one non-learned robot that has not learned a learning compensation amount of position control based on an operation command; at least one learned robot that has learned the learning compensation amount of the position control based on the operation command; and a storage device that stores the operation command and the learning compensation amount of the learned robot, the non-learned robot comprising a compensation amount estimation unit that compensates the learning compensation amount of the learned robot stored in the storage device based on a difference between the operation command of the learned robot stored in the storage device and an operation command of an own robot, and estimates the compensated learning compensation amount as a learning compensation amount of the own robot.Type: ApplicationFiled: August 3, 2018Publication date: February 28, 2019Inventors: Satoshi INAGAKI, Wenjie CHEN, Kaimeng WANG