Patents by Inventor Satoshi IWAI

Satoshi IWAI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240145718
    Abstract: A negative electrode slurry for a lithium ion secondary battery, according to an aspect of the present disclosure, comprises a negative electrode active material, a thickener, a preservative component, and a solvent, the thickener comprising carboxymethyl-cellulose or a salt thereof, the solvent comprising water, and the preservative component comprising a cyclic hydroxamic acid ethanolamine salt.
    Type: Application
    Filed: December 21, 2021
    Publication date: May 2, 2024
    Applicant: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Satoshi Komi, Yukiho Okuno, Mitsuru Iwai, Shuji Tsutsumi
  • Publication number: 20240136526
    Abstract: A negative electrode slurry for a lithium ion secondary battery, according to the present disclosure, is characterized by comprising a negative electrode active material, a thickener, a preservative component, and a solvent, the thickener comprising carboxymethyl-cellulose or a salt thereof, the solvent comprising water, and the preservative component comprising a compound having a tropone skeleton.
    Type: Application
    Filed: December 21, 2021
    Publication date: April 25, 2024
    Applicant: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Satoshi Komi, Yukiho Okuno, Mitsuru Iwai, Shuji Tsutsumi
  • Publication number: 20240112838
    Abstract: A method of producing a phosphate-coated SmFeN-based anisotropic magnetic powder, the method including stirring a slurry containing a raw material SmFeN-based anisotropic magnetic powder, water, a phosphate source, and an aluminum source to obtain a SmFeN-based anisotropic magnetic powder having a surface coated with a phosphate.
    Type: Application
    Filed: September 29, 2023
    Publication date: April 4, 2024
    Applicant: NICHIA CORPORATION
    Inventors: Masahiro ABE, Shuichi TADA, Satoshi YAMANAKA, Kenta IWAI
  • Publication number: 20230387912
    Abstract: A driving circuit that drives a switching element, the driving circuit includes: a controller that includes a first terminal connected to a gate terminal of the switching element and a second terminal connected to a source terminal of the switching element, and outputs a control signal from the first terminal to the gate terminal; a first capacitor and a first resistor connected in parallel; and a second capacitor and a second resistor connected in parallel, in which the first capacitor and the first resistor are connected in series to a first connecting wire for connecting the gate terminal and the first terminal on the gate terminal side of the first connecting wire, and in which the second capacitor and the second resistor are connected in series to the first connecting wire on the first terminal side of the first connecting wire.
    Type: Application
    Filed: September 7, 2021
    Publication date: November 30, 2023
    Inventors: Noriyuki NOSAKA, Hironori TAUCHI, Takuro HASHIMOTO, Wataru OKADA, Mamoru SUEKI, Satoshi IWAI
  • Publication number: 20230308088
    Abstract: The overcurrent protection circuit includes: a first transistor having an emitter connected to a control voltage; and a second transistor having a base connected to a collector of the first transistor, a collector connected to a base of the first transistor and pulled up to a voltage, and a grounded emitter. When the control voltage exceeds a first threshold voltage, the first and second transistors are turned on, the control voltage decreases as a result of decrease in the pull-up voltage, and a protection operation to turn a switching element off is started, and the overcurrent protection circuit includes a first diode connected between the control voltage and the emitter of the first transistor, and an element circuit connected between the emitter and the base thereof. The element circuit includes any of a second diode, a first resistor, and a parallel circuit including the second diode and the first resistor.
    Type: Application
    Filed: August 17, 2021
    Publication date: September 28, 2023
    Inventors: Satoshi IWAI, Mamoru SUEKI
  • Patent number: 11606021
    Abstract: A power converter apparatus includes a switching circuit generating an AC voltage by switching a DC voltage at a predetermined switching frequency, and a filter circuit converting the AC voltage from the switching circuit into the DC voltage by low-pass filtering the AC voltage. The filter circuit includes first and second bypass capacitors, and an inductor. The first bypass capacitor bypasses noise of a first frequency component of the AC voltage from the switching circuit, and the second bypass capacitor bypasses noise of a second frequency component of the AC voltage from the switching circuit, which is lower than the first frequency component. The inductor is between the first and second bypass capacitors, and the inductance thereof is set so that a resonance frequency of the filter circuit is lower than multiple times the switching frequency by insertion of the inductor, thereby reducing the switching noise flowing to the load.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: March 14, 2023
    Assignee: OMRON CORPORATION
    Inventors: Noriyuki Nosaka, Takeo Nishikawa, Wataru Okada, Satoshi Iwai, Takanori Ishii, Gun Eto
  • Patent number: 11545972
    Abstract: An overcurrent protection circuit is provided for a switching element turned on/off based on a control voltage. The overcurrent protection circuit includes a first transistor and a second transistor. The first transistor is a PNP bipolar transistor and has an emitter connected to the control voltage. The second transistor is an NPN bipolar transistor and has a base connected to a collector of the first transistor, a collector connected to a base of the first transistor and pulled up to a predetermined pull-up voltage, and a grounded emitter. When the control voltage exceeds a predetermined first threshold voltage, the first and second transistors are turned on, the control voltage is dropped by drop of the pull-up voltage, and thus the overcurrent protection circuit starts a protection operation of turning off the switching element.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: January 3, 2023
    Assignee: OMRON CORPORATION
    Inventors: Hironori Nakada, Satoshi Iwai, Noriyuki Nosaka
  • Patent number: 11496125
    Abstract: A driver circuit controls a first switch element. A first resistor is connected between the driver circuit and the first switch element. A second switch element is connected to the first switch element. An overcurrent detector circuit controls the second switch element based on an overcurrent current flowing through the first switch element. A second resistor is connected between the overcurrent detector circuit and the second switch element. The first and second resistor is set such that a turn-off time of the first switch element when the second switch element is turned on by the overcurrent detector circuit is longer than a turn-off time of the first switch element when the first switch element is turned off by the driver circuit.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: November 8, 2022
    Assignee: OMRON CORPORATION
    Inventors: Wataru Okada, Satoshi Iwai, Noriyuki Nosaka, Takeo Nishikawa, Kenji Kobayashi, Keiji Shiraishi
  • Publication number: 20220278522
    Abstract: An overcurrent protection circuit is provided for protecting an overcurrent flowing through a switching element that is controlled to be turned on and off based on a drive signal. The overcurrent protection circuit includes: a first transistor that is an N-channel field effect transistor (FET) having a drain connected to a control terminal of the switching element and a grounded source; a second transistor that is a PNP bipolar transistor having an emitter connected to the control terminal of the switching element, a collector connected to a gate of the first transistor and grounded via a first capacitor, and a base pulled up to a predetermined pull-up voltage; and a ground circuit connected in parallel with the first capacitor.
    Type: Application
    Filed: September 12, 2019
    Publication date: September 1, 2022
    Inventor: Satoshi IWAI
  • Patent number: 11329546
    Abstract: A power converter apparatus is provided to include a switching circuit, and a filter circuit. The switching circuit generates an AC voltage by switching a DC voltage at a predetermining switching frequency, and the filter circuit converts the AC voltage from the switching circuit into the DC voltage by low-pass filtering the AC voltage. The filter circuit induces first and second bypass capacitors, and an inductor. The first bypass capacitor bypasses noise of a first frequency component of the AC voltage from the switching circuit, and the second bypass capacitor bypasses noise of a second frequency component of the AC voltage from the switching circuit, which is lower than the first frequency component. The inductor is inserted between the first and second bypass capacitors, and the inductance thereof is set so that a resonance frequency of the filter circuit is lower than the switching frequency by insertion of the inductor.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: May 10, 2022
    Assignee: OMRON CORPORATION
    Inventors: Noriyuki Nosaka, Takeo Nishikawa, Wataru Okada, Satoshi Iwai, Takanori Ishii, Gun Eto
  • Patent number: 11196413
    Abstract: A switching element 1 has a gate terminal connected to an output end Vout of a driving circuit 12 via a capacitor 11 and a resistor 13 connected in parallel. The switching element 1 has a source terminal connected to the driving circuit 12 via a capacitor 14 and a Zener diode 15 connected in parallel. The Zener diode 15 has an anode terminal connected to the source terminal of the switching element 1 and a cathode terminal connected to the driving circuit 12.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: December 7, 2021
    Assignee: OMRON CORPORATION
    Inventors: Noriyuki Nosaka, Wataru Okada, Hironori Nakada, Satoshi Iwai
  • Publication number: 20210367499
    Abstract: A switching element 1 has a gate terminal connected to a Vout end 123 of a driving circuit 12 via a capacitor 11 and a resistor 13 connected in parallel. The switching element 1 has a source terminal connected to a Vee end 124 of the driving circuit 12 via a capacitor 14 and a resistor 14 connected in parallel.
    Type: Application
    Filed: March 13, 2019
    Publication date: November 25, 2021
    Inventors: Noriyuki NOSAKA, Wataru OKADA, Hironori NAKADA, Satoshi IWAI
  • Patent number: 11165421
    Abstract: A switching element 1 has a gate terminal connected to an output end 123 of a driving circuit 12 via a capacitor 11 and a resistor 13 connected in parallel. The switching element 1 has a source terminal connected to the driving circuit 12 via a capacitor 14. A diode 15 connected in series with a resistor 16 has a cathode terminal connected to a section between the capacitor 11 and the resistor 13, and the gate terminal and an anode terminal connected, via the resistor 16, to a section between the source terminal and the capacitor 14.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: November 2, 2021
    Assignee: OMRON CORPORATION
    Inventors: Noriyuki Nosaka, Wataru Okada, Hironori Nakada, Satoshi Iwai
  • Publication number: 20210320653
    Abstract: A switching element 1 has a gate terminal connected to an output end 123 of a driving circuit 12 via a capacitor 11 and a resistor 13 connected in parallel. The switching element 1 has a source terminal connected to the driving circuit 12 via a capacitor 14. A diode 15 connected in series with a resistor 16 has a cathode terminal connected to a section between the capacitor 11 and the resistor 13, and the gate terminal and an anode terminal connected, via the resistor 16, to a section between the source terminal and the capacitor 14.
    Type: Application
    Filed: March 14, 2019
    Publication date: October 14, 2021
    Inventors: Noriyuki NOSAKA, Wataru OKADA, Hironori NAKADA, Satoshi IWAI
  • Publication number: 20210273553
    Abstract: A power converter apparatus is provided to include a switching circuit, and a filter circuit. The switching circuit generates an AC voltage by switching a DC voltage at a predetermined switching frequency, and the filter circuit converts the AC voltage from the switching circuit into the DC voltage by low-pass filtering the AC voltage. The filter circuit includes first and second bypass capacitors, and an inductor. The first bypass capacitor bypasses noise of a first frequency component of the AC voltage from the switching circuit, and the second bypass capacitor bypasses noise of a second frequency component of the AC voltage from the switching circuit, which is lower than the first frequency component. The inductor is inserted between the first and second bypass capacitors, and the inductance thereof is set so that a resonance frequency of the filter circuit is lower than multiple times the switching frequency by insertion of the inductor.
    Type: Application
    Filed: March 11, 2019
    Publication date: September 2, 2021
    Inventors: Noriyuki NOSAKA, Takeo NISHIKAWA, Wataru OKADA, Satoshi IWAI, Takanori ISHII, Gun ETO
  • Publication number: 20210242864
    Abstract: A driver circuit controls a first switch element. A first resistor is connected between the driver circuit and the first switch element. A second switch element is connected to the first switch element. An overcurrent detector circuit controls the second switch element based on an overcurrent current flowing through the first switch element. A second resistor is connected between the overcurrent detector circuit and the second switch element. The first and second resistor is set such that a turn-off time of the first switch element when the second switch element is turned on by the overcurrent detector circuit is longer than a turn-off time of the first switch element when the first switch element is turned off by the driver circuit.
    Type: Application
    Filed: March 11, 2019
    Publication date: August 5, 2021
    Inventors: Wataru OKADA, Satoshi IWAI, Noriyuki NOSAKA, Takeo NISHIKAWA, Kenji KOBAYASHI, Keiji SHIRAISHI
  • Publication number: 20210242867
    Abstract: A switching element 1 has a gate terminal connected to an output end Vout of a driving circuit 12 via a capacitor 11 and a resistor 13 connected in parallel. The switching element 1 has a source terminal connected to the driving circuit 12 via a capacitor 14 and a Zener diode 15 connected in parallel. The Zener diode 15 has an anode terminal connected to the source terminal of the switching element 1 and a cathode terminal connected to the driving circuit 12.
    Type: Application
    Filed: March 13, 2019
    Publication date: August 5, 2021
    Inventors: Noriyuki NOSAKA, Wataru OKADA, Hironori NAKADA, Satoshi IWAI
  • Publication number: 20210226620
    Abstract: An overcurrent protection circuit is provided for a switching element turned on/off based on a control voltage. The overcurrent protection circuit includes a first transistor and a second transistor. The first transistor is a PNP bipolar transistor and has an emitter connected to the control voltage. The second transistor is an NPN bipolar transistor and has a base connected to a collector of the first transistor, a collector connected to a base of the first transistor and pulled up to a predetermined pull-up voltage, and a grounded emitter. When the control voltage exceeds a predetermined first threshold voltage, the first and second transistors are turned on, the control voltage is dropped by drop of the pull-up voltage, and thus the overcurrent protection circuit starts a protection operation of turning off the switching element.
    Type: Application
    Filed: January 30, 2020
    Publication date: July 22, 2021
    Inventors: Hironori NAKADA, Satoshi IWAI, Noriyuki NOSAKA
  • Publication number: 20210167692
    Abstract: A power converter apparatus is provided to include a switching circuit, and a filter circuit. The switching circuit generates an AC voltage by switching a DC voltage at a predetermining switching frequency, and the filter circuit converts the AC voltage from the switching circuit into the DC voltage by low-pass filtering the AC voltage. The filter circuit induces first and second bypass capacitors, and an inductor. The first bypass capacitor bypasses noise of a first frequency component of the AC voltage from the switching circuit, and the second bypass capacitor bypasses noise of a second frequency component of the AC voltage from the switching circuit, which is lower than the first frequency component. The inductor is inserted between the first and second bypass capacitors, and the inductance thereof is set so that a resonance frequency of the filter circuit is lower than the switching frequency by insertion of the inductor.
    Type: Application
    Filed: March 11, 2019
    Publication date: June 3, 2021
    Inventors: Noriyuki NOSAKA, Takeo NISHIKAWA, Wataru OKADA, Satoshi IWAI, Takanori ISHII, Gun ETO
  • Patent number: 10998138
    Abstract: A solid electrolytic capacitor according to the present disclosure includes an anode body made of a porous valve metal, a dielectric layer formed on a surface of the anode body, and a solid electrolyte layer formed on the dielectric layer. A carboxylic acid ester is filled in at least part of cavities inside the solid electrolyte layer. By the solid electrolytic capacitor according to the present disclosure, it is possible to provide a solid electrolytic capacitor capable of suppressing an increase in ESR and an increase in leakage current.
    Type: Grant
    Filed: December 5, 2018
    Date of Patent: May 4, 2021
    Assignee: TOKIN CORPORATION
    Inventors: Masanori Takahashi, Satoshi Iwai, Yusuke Hoshina