Patents by Inventor Satoshi Kamiyama
Satoshi Kamiyama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240310775Abstract: A cleaning blade includes a tip end adapted to contact a photoconductor member. The tip end is formed of polyurethane having tan ? of greater than or equal to 0.35 under an environment of 23° C., a loss elastic modulus of greater than or equal to 5.59 MPa under an environment of 23° C., and a rebound resilience of less than or equal to 21% under an environment of 23° C.Type: ApplicationFiled: December 3, 2021Publication date: September 19, 2024Inventors: Junya KAMIYAMA, Yoichi HAGI, Kenji SASAKI, Satoshi FUKUOKA, Satoshi NAKAKITA
-
Publication number: 20240113174Abstract: A laminate includes an amorphous glass substrate, and an AlN layer formed on the amorphous glass substrate. The AlN layer is c-axis oriented on the amorphous glass substrate, a glass transition temperature (Tg) of the amorphous glass substrate is 720° C. to 810° C., a coefficient of thermal expansion (CTE) of the amorphous glass substrate is 3.5×10?6 [1/K] to 4.0×10?6 [1/K], and a softening point of the amorphous glass substrate is 950° C. to 1050° C.Type: ApplicationFiled: December 7, 2023Publication date: April 4, 2024Applicants: Japan Display Inc., MEIJO UNIVERSITYInventors: Masanobu IKEDA, Arichika ISHIDA, Satoshi KAMIYAMA, Motoaki IWAYA, Tetsuya TAKEUCHI
-
Publication number: 20230369534Abstract: A semiconductor light emitting element includes: a growth substrate; a mask formed on the growth substrate; and a columnar semiconductor layer grown from at least one opening that is provided in the mask. The columnar semiconductor layer includes an n-type nanowire layer formed at a center thereof, an active layer formed on an outer periphery of the n-type nanowire layer, and a p-type semiconductor layer formed on an outer periphery of the active layer. An opening ratio of the opening is 0.1% or more and 5.0% or less, and a light emission wavelength is 480 nm or more.Type: ApplicationFiled: August 25, 2021Publication date: November 16, 2023Applicants: KOITO MANUFACTURING CO., LTD., MEIJO UNIVERSITYInventors: Satoshi KAMIYAMA, Tetsuya TAKEUCHI, Motoaki lWAYA, Isamu AKASAKI, Weifang LU, Kazuma ITO, Naoki SONE
-
Patent number: 11462659Abstract: Provided is a semiconductor light emitting device including a growth substrate; a pillar-shaped semiconductor layer formed on the growth substrate; and a buried semiconductor layer formed to cover the pillar-shaped semiconductor layer, wherein the pillar-shaped semiconductor layer has an n-type nanowire layer formed at a center, an active layer formed on an outermore side than the n-type nanowire layer, a p-type semiconductor layer formed on an outermore side than the active layer and a tunnel junction layer formed on an outermore side than the p-type semiconductor layer, and wherein at least a part of the pillar-shaped semiconductor layer is provided with a removed region formed by removing from the buried semiconductor layer to a part of the tunnel junction layer.Type: GrantFiled: September 9, 2020Date of Patent: October 4, 2022Assignees: KOITO MANUFACTURING CO., LTD., MEIJO UNIVERSITY, TOYODA GOSEI CO., LTD.Inventors: Satoshi Kamiyama, Tetsuya Takeuchi, Motoaki Iwaya, Isamu Akasaki, Lu Weifang, Naoki Sone, Kazuyoshi Iida, Ryo Nakamura, Masaki Oya
-
Publication number: 20220285580Abstract: The semiconductor light-emitting device includes an n-type semiconductor layer, a plurality of columnar semiconductors on the n-type semiconductor layer, a buried layer filling in a space between the columnar semiconductors, and a current suppression region suppressing a current. The columnar semiconductors has a hexagonal column and an active layer covering the hexagonal column. The hexagonal column has a hexagonal first surface and a second surface opposite to the first surface. The first surface of the columnar semiconductors faces the base layer. The second surface of the columnar semiconductors faces the current suppression region.Type: ApplicationFiled: February 16, 2022Publication date: September 8, 2022Inventors: Koji Okuno, Koichi MUZUTANI, Masaki OYA, Kazuyoshi IIDA, Satoshi KAMIYAMA, Tetsuya TEKEUCHI, Motoaki IWAYA, Isamu AKASAKI
-
Publication number: 20220246793Abstract: To suppress current leakage between the semiconductor layer below the mask and the buried layer above the mask. To reduce the drive voltage and improve the emission efficiency by improving the efficiency of carrier injection into the active layer. The semiconductor light-emitting device includes a substrate, a mask, a columnar semiconductor, a buried layer, a cathode electrode, and an anode electrode. The substrate has a conductive substrate, an n-type semiconductor layer disposed on the conductive substrate, and a p-type semiconductor layer disposed on the n-type semiconductor layer. The p-type semiconductor layer has a high resistance, thereby enhancing insulation between the n-type semiconductor layer and the buried layer.Type: ApplicationFiled: January 21, 2022Publication date: August 4, 2022Inventors: Koji OKUNO, Koichi MIZUTANI, Masaki OYA, Kazuyoshi IIDA, Satoshi KAMIYAMA, Tetsuya TAKEUCHI, Motoaki IWAYA, Isamu AKASAKI
-
Publication number: 20220246789Abstract: A buried layer forming step includes three steps of a facet structure forming step, a c-plane forming step, and a flattening step. In the facet structure forming step, a buried layer grows to form a periodic facet structure that matches an arrangement pattern of columnar semiconductors. In the c-plane forming step, the buried layer grows such that a {0001} plane (upper surface) is formed in a region of the buried layer corresponding to an upper portion of the columnar semiconductor. In the flattening step, lateral growth of the buried layer is promoted and the c-plane formed in the c-plane forming step is widened to flatten a surface of the buried layer.Type: ApplicationFiled: January 28, 2022Publication date: August 4, 2022Inventors: Koji OKUNO, Koichi MIZUTANI, Masaki OYA, Kazuyoshi IIDA, Naoki SONE, Satoshi KAMIYAMA, Tetsuya TAKEUCHI, Motoaki IWAYA, Isamu AKASAKI
-
Patent number: 11259777Abstract: According to one embodiment, an ultrasound diagnosis apparatus includes a storage and a control unit. The storage stores transmission/reception conditions for a first ultrasound probe among a plurality of ultrasound probes. Upon receipt of a second switching instruction to switch a second ultrasound probe to the first ultrasound probe after a first switching instruction to switch the first ultrasound probe to the second ultrasound probe, the control unit applies the transmission/reception conditions stored in the storage to the first ultrasound probe when the time between the first switching instruction and the second switching instruction is less than a predetermined time.Type: GrantFiled: October 12, 2017Date of Patent: March 1, 2022Assignee: Canon Medical Systems CorporationInventors: Koichi Morikawa, Hironobu Hongou, Gen Nagano, Kenichi Unayama, Satoshi Kamiyama
-
Patent number: 11211526Abstract: A semiconductor light-emitting element having an emission peak wavelength of 395 nm or more and 425 nm or less, comprises: a substrate including a first surface and a second surface, at least one surface selected from the group consisting of the first and second surfaces having an uneven region; a semiconductor layer on the first surface; and a multilayer reflective film on the second surface or the semiconductor layer, wherein the multilayer reflective film includes a structure having a plurality of first dielectric films and a plurality of second dielectric films, the first dielectric films and the second dielectric films being alternately stacked.Type: GrantFiled: September 16, 2019Date of Patent: December 28, 2021Assignees: TOSHIBA MATERIALS CO., LTD., MEIJO UNIVERSITYInventors: Satoshi Kamiyama, Atsuya Sasaki, Ryosuke Hiramatsu, Hideaki Hirabayashi
-
Patent number: 11211529Abstract: A semiconductor light-emitting element according to an embodiment has a light emission peak wavelength not less than 380 nm and not more than 425 nm. The semiconductor light-emitting element includes a stacked structure including a reflective layer, a substrate provided on the reflective layer, and a semiconductor layer provided on the substrate. An uneven structure is provided in a surface of the substrate on the semiconductor layer side. The semiconductor layer includes a buffer layer made of aluminum nitride and having a thickness not less than 10 nm and not more than 100 nm. The buffer layer includes oxygen; and 0.01?O8nm/O3nm?0.5 is satisfied, where O3nm (at %) is the oxygen concentration at a depth of 3 nm of the buffer layer, and O8nm (at %) is the oxygen concentration at a depth of 8 nm of the buffer layer.Type: GrantFiled: February 5, 2020Date of Patent: December 28, 2021Assignees: TOSHIBA MATERIALS CO., LTD., MEIJO UNIVERSITYInventors: Ryosuke Hiramatsu, Atsuya Sasaki, Hideaki Hirabayashi, Satoshi Kamiyama
-
Patent number: 11129595Abstract: According to one embodiment, an ultrasonic diagnostic apparatus includes at least a memory circuitry, a processing circuitry, a data interpolation circuitry, and an image generating circuitry. The memory circuitry stores a plurality of pieces of reception data in an order of reception, the plurality of pieces of reception data being received continuously in a time series by a plurality of transducers, and specifies reading positions in an order different from the order of reception. The processing circuitry calculates a delay time, and calculates, based on the delay time, reading positions for acquiring reception data being used for calculating interpolation data from the memory circuitry. The data interpolation circuitry calculates interpolating data based on the plurality of pieces of reception data acquired from the calculated reading positions of the memory circuitry. The image generating circuitry generates an ultrasonic image based on a reception beam formed by using the interpolation data.Type: GrantFiled: October 22, 2015Date of Patent: September 28, 2021Assignee: Canon Medical Systems CorporationInventors: Teruki Hagihara, Wataru Kameishi, Hiroyuki Shibanuma, Masaaki Ishitsuka, Shuta Fujiwara, Satoshi Kamiyama, Tomohiro Fujita
-
Publication number: 20210074877Abstract: Provided is a semiconductor light emitting device including a growth substrate; a pillar-shaped semiconductor layer formed on the growth substrate; and a buried semiconductor layer formed to cover the pillar-shaped semiconductor layer, wherein the pillar-shaped semiconductor layer has an n-type nanowire layer formed at a center, an active layer formed on an outermore side than the n-type nanowire layer, a p-type semiconductor layer formed on an outermore side than the active layer and a tunnel junction layer formed on an outermore side than the p-type semiconductor layer, and wherein at least a part of the pillar-shaped semiconductor layer is provided with a removed region formed by removing from the buried semiconductor layer to a part of the tunnel junction layer.Type: ApplicationFiled: September 9, 2020Publication date: March 11, 2021Applicants: KOITO MANUFACTURING CO., LTD., MEIJO UNIVERSITY, TOYODA GOSEI CO., LTD.Inventors: Satoshi Kamiyama, Tetsuya Takeuchi, Motoaki Iwaya, Isamu Akasaki, Lu Weifang, Naoki Sone, Kazuyoshi Iida, Ryo Nakamura, Masaki Oya
-
Patent number: 10833223Abstract: To provide a Group III nitride semiconductor light-emitting device exhibiting the improved light extraction efficiency as well as reducing the influence of polarization that a p-type conductivity portion and an n-type conductivity portion occur in the AlGaN layer caused by the Al composition variation, and a production method therefor. A first p-type contact layer is a p-type AlGaN layer. A second p-type contact layer is a p-type AlGaN layer. The Al composition in the first p-type contact layer is reduced with distance from a light-emitting layer. The Al composition in the second p-type contact layer is reduced with distance from the light-emitting layer. The Al composition in the second p-type contact layer is lower than that in the first p-type contact layer. The Al composition variation rate to the unit thickness in the second p-type contact layer is higher than that in the first p-type contact layer.Type: GrantFiled: November 8, 2018Date of Patent: November 10, 2020Assignees: TOYODA GOSEI CO., LTD., MEIJO UNIVERSITYInventors: Tetsuya Takeuchi, Satoshi Kamiyama, Motoaki Iwaya, Isamu Akasaki, Hisanori Kojima, Toshiki Yasuda, Kazuyoshi Iida
-
Publication number: 20200176633Abstract: A semiconductor light-emitting element according to an embodiment has a light emission peak wavelength not less than 380 nm and not more than 425 nm. The semiconductor light-emitting element includes a stacked structure including a reflective layer, a substrate provided on the reflective layer, and a semiconductor layer provided on the substrate. An uneven structure is provided in a surface of the substrate on the semiconductor layer side. The semiconductor layer includes a buffer layer made of aluminum nitride and having a thickness not less than 10 nm and not more than 100 nm. The buffer layer includes oxygen; and 0.01?O8nm/O3nm?0.5 is satisfied, where O3nm (at %) is the oxygen concentration at a depth of 3 nm of the buffer layer, and O8nm (at %) is the oxygen concentration at a depth of 8 nm of the buffer layer.Type: ApplicationFiled: February 5, 2020Publication date: June 4, 2020Applicants: TOSHIBA MATERIALS CO., LTD., Meijo UniversityInventors: Ryosuke HIRAMATSU, Atsuya SASAKI, Hideaki HIRABAYASHI, Satoshi KAMIYAMA
-
Patent number: 10624606Abstract: An ultrasound diagnostic apparatus according to a present embodiment includes driving pulse generating circuitries and a transmission control circuitry. The transmission control circuitry turns on a switching element of respective driving pulse generating circuitries of the driving pulse generating circuitries to be grounded, and thereby controls so as to make an output impedance of the respective driving pulse generating circuitries become a low impedance. The transmission control circuitry turns off the switching element of the respective driving pulse generating circuitries, and thereby controls so as to make the output impedance become a high impedance by means of a resistance value of the resistance.Type: GrantFiled: December 21, 2015Date of Patent: April 21, 2020Assignee: Canon Medical Systems CorporationInventors: Wataru Kameishi, Hiroyuki Shibanuma, Satoshi Kamiyama, Masaaki Ishitsuka, Tomohiro Fujita, Teruki Hagihara, Shuta Fujiwara
-
Publication number: 20200013924Abstract: A semiconductor light-emitting element having an emission peak wavelength of 395 nm or more and 425 nm or less, comprises: a substrate including a first surface and a second surface, at least one surface selected from the group consisting of the first and second surfaces having an uneven region; a semiconductor layer on the first surface; and a multilayer reflective film on the second surface or the semiconductor layer, wherein the multilayer reflective film includes a structure having a plurality of first dielectric films and a plurality of second dielectric films, the first dielectric films and the second dielectric films being alternately stacked.Type: ApplicationFiled: September 16, 2019Publication date: January 9, 2020Applicants: TOSHIBA MATERIALS CO., LTD., Meijo UniversityInventors: Satoshi KAMIYAMA, Atsuya SASAKI, Ryosuke HIRAMATSU, Hideaki HIRABAYASHI
-
Publication number: 20190148592Abstract: To provide a Group III nitride semiconductor light-emitting device exhibiting the improved light extraction efficiency as well as reducing the influence of polarization that a p-type conductivity portion and an n-type conductivity portion occur in the AlGaN layer caused by the Al composition variation, and a production method therefor. A first p-type contact layer is a p-type AlGaN layer. A second p-type contact layer is a p-type AlGaN layer. The Al composition in the first p-type contact layer is reduced with distance from a light-emitting layer. The Al composition in the second p-type contact layer is reduced with distance from the light-emitting layer. The Al composition in the second p-type contact layer is lower than that in the first p-type contact layer. The Al composition variation rate to the unit thickness in the second p-type contact layer is higher than that in the first p-type contact layer.Type: ApplicationFiled: November 8, 2018Publication date: May 16, 2019Inventors: Tetsuya TAKEUCHI, Satoshi KAMIYAMA, Motoaki IWAYA, Isamu AKASAKI, Hisanori KOJIMA, Toshiki YASUDA, Kazuyoshi IIDA
-
Patent number: 10123777Abstract: An ultrasound diagnosis apparatus includes a transformer, a first power source, a second power source, and a switching unit. The transformer includes a primary winding and a secondary winding, and drives an ultrasound transducer based on a voltage generated in the secondary winding. The first and second power sources cause a potential difference. The switching unit switches a connection path between the primary winding and at least one of the first and second power sources to a first connection path that connects the first power source to one end of the primary winding and the second power source to the other end, a second connection path that connects the first power source to the other end and the second power source to the one end, or a ground connection path that connects the first power source or the second power source to the ground through the primary winding.Type: GrantFiled: December 21, 2015Date of Patent: November 13, 2018Assignee: Toshiba Medical Systems CorporationInventors: Wataru Kameishi, Hiroyuki Shibanuma, Shuta Fujiwara, Satoshi Kamiyama, Takayuki Shiina, Masaaki Ishitsuka, Tomohiro Fujita, Teruki Hagihara
-
Publication number: 20180103926Abstract: According to one embodiment, an ultrasound diagnosis apparatus includes a storage and a control unit. The storage stores transmission/reception conditions for a first ultrasound probe among a plurality of ultrasound probes. Upon receipt of a second switching instruction to switch a second ultrasound probe to the first ultrasound probe after a first switching instruction to switch the first ultrasound probe to the second ultrasound probe, the control unit applies the transmission/reception conditions stored in the storage to the first ultrasound probe when the time between the first switching instruction and the second switching instruction is less than a predetermined time.Type: ApplicationFiled: October 12, 2017Publication date: April 19, 2018Applicant: Toshiba Medical Systems CorporationInventors: Koichi MORIKAWA, Hironobu Hongou, Gen Nagano, Kenichi Unayama, Satoshi Kamiyama
-
Patent number: 9629611Abstract: Saturation of received signals and generation of artifacts that are associated with tap concentration are prevented from occurring even if the differences in the delay amount between each of transducers are small. The ultrasound diagnosis apparatus comprises a plurality of ultrasound transducers, a plurality of taps, a delay amount calculator, a channel distributor, and a delay processor. The delay amount calculator calculates a first delay amount. The channel distributor specifies the minimum delay amount and the maximum delay amount from the first delay amount. Further, the channel distributor divides the range from the minimum delay amount to the maximum delay amount by the number of taps, and relates each to a tap. The channel distributor also inputs a signal output from an ultrasound transducer to the tap related to the divided range including the corresponding first delay amount.Type: GrantFiled: February 3, 2012Date of Patent: April 25, 2017Assignees: TOSHIBA MEDICAL SYSTEMS CORPORATION, KABUSHIKI KAISHA TOSHIBAInventors: Wataru Kameishi, Hiroyuki Shibanuma, Satoshi Kamiyama, Shuta Fujiwara, Gen Nagano, Takayuki Shiina