Patents by Inventor Satoshi Morisawa

Satoshi Morisawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8494107
    Abstract: A formic acid aqueous solution that contains Fe (II) ions is produced by dissolving metal iron in a formic acid aqueous solution. Nitrogen is supplied from a nitrogen supply device to a chemical liquid tank and then discharged from a discharge line to reduce the dissolved oxygen concentration in the aqueous solution. The chemical liquid tank is filled with the formic acid aqueous solution sealed with nitrogen, and is transferred from a factory to a nuclear reactor building designated as radiation-controlled areas. Inside the nuclear reactor building, the chemical liquid tank is installed in a film deposition apparatus connected to a reactor water recirculation pipeline. The formic acid aqueous is supplied from the chemical liquid tank to the inside of the reactor water recirculation pipeline, and then a ferrite film is formed on the inner surface of the reactor water recirculation pipeline.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: July 23, 2013
    Assignee: Hitachi, Ltd.
    Inventors: Hideyuki Hosokawa, Makoto Nagase, Satoshi Morisawa, Motoaki Sakashita, Katsuo Yokota
  • Patent number: 8259894
    Abstract: A formic acid aqueous solution that contains Fe (II) ions is produced by dissolving metal iron in a formic acid aqueous solution. Nitrogen is supplied from a nitrogen supply device to a chemical liquid tank and then discharged from a discharge line to reduce the dissolved oxygen concentration in the aqueous solution. The chemical liquid tank is filled with the formic acid aqueous solution sealed with nitrogen, and transferred from a factory to a nuclear reactor building designated as radiation-controlled areas. Inside the nuclear reactor building, the chemical liquid tank is installed in a film deposition apparatus connected to a reactor water recirculation pipeline. The formic acid aqueous is supplied from the chemical liquid tank to the inside of the reactor water recirculation pipeline, and then a ferrite film is formed on the inner surface of the reactor water recirculation pipeline.
    Type: Grant
    Filed: June 26, 2007
    Date of Patent: September 4, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Hideyuki Hosokawa, Makoto Nagase, Satoshi Morisawa, Motoaki Sakashita, Katsuo Yokota
  • Publication number: 20090316852
    Abstract: A method for suppressing deposit of radionuclide onto structure member composing a nuclear power plant, comprising the steps of: bringing film formation liquid including iron (II) ions and either of zinc (II) ions and nickel (II) ions into contact with a surface of the structure member; and forming either of a ferrite film including the zinc and a ferrite film including the nickel on the surface of the structure member.
    Type: Application
    Filed: June 6, 2008
    Publication date: December 24, 2009
    Inventors: Hideyuki Hosokawa, Makoto Nagase, Satoshi Morisawa, Motoaki Sakashita, Katsuo Yokota
  • Publication number: 20090290675
    Abstract: The present invention is a method for suppressing corrosion of carbon steel members composing a nuclear power plant. That is, the processing solution contains a chemical including iron (II) ions, an oxidizing agent for oxidizing at least one part of the iron (II) ions into iron (III) ion, and a pH adjustment agent for adjusting pH. The pH of the processing solution is adjusted in the range of 5.5 to 9.0 by the pH adjustment agent. The processing solution is introduced into a purifying system pipe having the carbon steel members. The iron (II) ions are adsorbed on an inner surface of the purifying system pipe, namely, a surface of the carbon steel members. The ferrite film is formed on the surface of the carbon steel members by oxidizing the absorbed iron (II) ions. Therefore, corrosion of the carbon steel members is suppressed by the ferrite film.
    Type: Application
    Filed: June 25, 2009
    Publication date: November 26, 2009
    Inventors: Makoto Nagase, Hideyuki Hosokawa, Satoshi Morisawa, Motoaki Sakashita, Katsuo Yokota, IIchiro Kataoka
  • Publication number: 20090003508
    Abstract: A formic acid aqueous solution that contains Fe (II) ions is produced by dissolving metal iron in a formic acid aqueous solution. Nitrogen is supplied from a nitrogen supply device to a chemical liquid tank and then discharged from a discharge line to reduce the dissolved oxygen concentration in the aqueous solution. The chemical liquid tank is filled with the formic acid aqueous solution sealed with nitrogen, and is transferred from a factory to a nuclear reactor building designated as radiation-controlled areas. Inside the nuclear reactor building, the chemical liquid tank is installed in a film deposition apparatus connected to a reactor water recirculation pipeline. The formic acid aqueous is supplied from the chemical liquid tank to the inside of the reactor water recirculation pipeline, and then a ferrite film is formed on the inner surface of the reactor water recirculation pipeline.
    Type: Application
    Filed: April 30, 2008
    Publication date: January 1, 2009
    Inventors: Hideyuki Hosokawa, Makoto Nagase, Satoshi Morisawa, Motoaki Sakashita, Katsuo Yokota
  • Publication number: 20090003507
    Abstract: The present invention is a method for suppressing corrosion of carbon steel members composing a nuclear power plant. That is, the processing solution contains a chemical including iron (II) ions, an oxidizing agent for oxidizing at least one part of the iron (II) ions into iron (III) ion, and a pH adjustment agent for adjusting pH. The pH of the processing solution is adjusted in the range of 5.5 to 9.0 by the pH adjustment agent. The processing solution is introduced into a purifying system pipe having the carbon steel members. The iron (II) ions are adsorbed on an inner surface of the purifying system pipe, namely, a surface of the carbon steel members. The ferrite film is formed on the surface of the carbon steel members by oxidizing the absorbed iron (II) ions. Therefore, corrosion of the carbon steel members is suppressed by the ferrite film.
    Type: Application
    Filed: June 27, 2007
    Publication date: January 1, 2009
    Inventors: Makoto NAGASE, Hideyuki Hosokawa, Satoshi Morisawa, Motoaki Sakashita, Katsuo Yokota, Ichiro Kataoka
  • Publication number: 20080181351
    Abstract: A formic acid aqueous solution that contains Fe (II) ions is produced by dissolving metal iron in a formic acid aqueous solution. Nitrogen is supplied from a nitrogen supply device to a chemical liquid tank and then discharged from a discharge line to reduce the dissolved oxygen concentration in the aqueous solution. The chemical liquid tank is filled with the formic acid aqueous solution sealed with nitrogen, and transferred from a factory to a nuclear reactor building designated as radiation-controlled areas. Inside the nuclear reactor building the chemical liquid tank is installed in a film deposition apparatus connected to a reactor water recirculation pipeline. The formic acid aqueous is supplied from the chemical liquid tank to the inside of the reactor water recirculation pipeline, and then a ferrite film is formed on the inner surface of the reactor water recirculation pipeline.
    Type: Application
    Filed: June 26, 2007
    Publication date: July 31, 2008
    Inventors: Hideyuki Hosokawa, Makoto Nagase, Satoshi Morisawa, Motoaki Sakashita, Katsuo Yokota
  • Publication number: 20080075886
    Abstract: A nuclear reactor structural material (for example, a spacer spring) is immersed in purified water in a treatment bath. The temperature of the purified water increased to 90° C. by a heater. Iron formate (a solution containing iron (II) ions) in an iron formate tank, hydrogen peroxide in a hydrogen peroxide tank, and hydrazine in a hydrazine tank are injected into a pipe and are guided into the treatment bath. The injection of iron formate is performed until the concentration of iron (II) ions in the purified water becomes 200 ppm or more. By injecting hydrazine, pH is adjusted in a range of from 5.5 to 9.0. A portion of a magnetite film thus formed on the structural material is then removed, e.g., by applying ultrasonic waves. With this process, a fine strong magnetite film for suppressing the elution of cobalt from the nuclear reactor structural material is formed on the surface of the nuclear reactor structural material.
    Type: Application
    Filed: August 16, 2007
    Publication date: March 27, 2008
    Inventors: Makoto NAGASE, Hideyuki Hosokawa, Kazushige Ishida, Satoshi Morisawa, Motoaki Sakashita, Motohiro Aizawa