Patents by Inventor Satoshi Sakashita

Satoshi Sakashita has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11936304
    Abstract: The DC/DC converter circuit includes: a primary-side circuit configured to convert DC power from a DC power source into a pulse voltage; an isolation transformer configured to transform the pulse voltage while isolating the pulse voltage; a secondary-side circuit connectable in a switching manner by a switching circuit to one of a rectifier circuit for a high-voltage low-current output mode or a current doubler circuit for a low-voltage high-current output mode; and a control circuit configured to perform connection switching control of the switching circuit so as to establish, depending on target supply power, connection to the rectifier circuit in the high-voltage low-current output mode, and connection to the current doubler circuit in the low-voltage high-current output mode.
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: March 19, 2024
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Satoshi Ojika, Tomokazu Sakashita
  • Patent number: 11048836
    Abstract: A method for producing a porous body, comprising a raw-material mixing step of mixing talc having an average particle size of 1 ?m or more and 18 ?m or less, alumina, an auxiliary raw material containing a material that undergoes a eutectic reaction with talc and being prepared in an amount so as to satisfy a weight ratio of 0.5% or more and 1.5% or less by weight relative to the talc, and a pore-forming agent, to provide green body, and a molding and firing step of molding the green body to provide a compact and firing this compact at a firing temperature of 1350° C. to 1440° C.
    Type: Grant
    Filed: May 18, 2018
    Date of Patent: June 29, 2021
    Assignee: NGK Insulators, Ltd.
    Inventors: Satoshi Sakashita, Hiroyuki Nagaoka, Takehide Shimoda
  • Patent number: 10540775
    Abstract: In a porous body, a surface layer thickness Ts takes a relatively small value satisfying P?0.54 Ts (formula (1)), the surface layer thickness Ts being derived by a microstructure analysis using the porous-body data that is prepared through three-dimensional scanning of a region including a surface (inflow plane 61) of the porous body. Here, P denotes a porosity [%] of the porous body, and 0%<P<100% and 0 ?m<Ts are assumed. The surface layer thickness Ts is derived as a distance in a thickness direction (X direction) between a surface-layer region start plane 92 in which a straight-pore opening ratio becomes 98% or less for the first time and a surface-layer region end plane 93 in which the straight-pore opening ratio becomes 1% or less for the first time.
    Type: Grant
    Filed: March 23, 2017
    Date of Patent: January 21, 2020
    Assignee: NGK Insulators, Ltd.
    Inventors: Ayaka Sakai, Satoshi Sakashita, Shingo Sokawa, Yuichi Tajima
  • Patent number: 10422760
    Abstract: Object information representing a honeycomb structure with a plurality of meshes is obtained, and an inner-wall-surface heat transfer coefficient hs, i.e., a heat transfer coefficient between an inner wall surface of a cell and a fluid, is derived as follows. First, one of the meshes as a target for derivation of the inner-wall-surface heat transfer coefficient hs is set (S200), and a dimensionless coordinate X* is derived on the basis of position information (X-coordinate) of the set mesh and fluid state information (S210). An inner-wall-surface dimensionless heat transfer coefficient Nus corresponding to the derived dimensionless coordinate X* is then derived on the basis of the inner-wall-surface dimensionless correspondence information (S220 to S250). The inner-wall-surface heat transfer coefficient hs in the mesh set as the derivation target is then derived on the basis of the derived inner-wall-surface dimensionless heat transfer coefficient Nus (S260).
    Type: Grant
    Filed: March 28, 2016
    Date of Patent: September 24, 2019
    Assignee: NGK Insulators, Ltd.
    Inventors: Satoshi Sakashita, Shingo Sokawa, Rishun Kin, Norihisa Fujie
  • Patent number: 10414065
    Abstract: A method for manufacturing a honeycomb structure according to the present invention is a method for manufacturing a honeycomb structure provided with partitions forming a plurality of cells. This manufacturing method includes a structure formation process including a pore-forming material placement step of placing a pore-forming material for forming pores in the partitions, a raw material placement step of placing tabular grains and raw material grains such that the tabular grains are arranged in a predetermined direction with respect to the partition surfaces while the tabular grains and the raw material grains constitute a raw material for forming the partitions, and a sintering step of sintering the placed raw material. The honeycomb structure is produced by repeating the structure formation process a plurality of times.
    Type: Grant
    Filed: September 7, 2016
    Date of Patent: September 17, 2019
    Assignee: NGK Insulators, Ltd.
    Inventors: Satoshi Sakashita, Hiroyuki Nagaoka
  • Patent number: 10365201
    Abstract: A CPU of an analysis apparatus performs a fluid analysis and derives transient distribution information that represents an accumulation distribution of a particulate layer on an inflow-side inner circumferential surface of a honeycomb structure at a time point after a short time interval ?t (step S130). The CPU then repeatedly performs a fluid analysis by taking into account the transient distribution information derived previous time to repeatedly derive transient distribution information (steps S130 to S150) and then derives post-transient-analysis distribution information that represents the accumulation distribution of the particulate layer at a later time point (step S160).
    Type: Grant
    Filed: September 7, 2016
    Date of Patent: July 30, 2019
    Assignee: NGK Insulators, Ltd.
    Inventors: Yukio Miyairi, Satoshi Sakashita, Kazuya Mori, Naoki Yoshida, Shingo Sokawa, Kenji Suzuki
  • Patent number: 10343300
    Abstract: A method for manufacturing a porous body includes a structure forming step that is repeatedly performed a plurality of times and includes: a pore-forming material placing step of placing a pore-forming material 50 for forming pores in the porous body; an aggregate placing step of placing aggregate particles 51 which are part of raw materials of the porous body; a binder placing step of placing binder particles 52 which are part of the raw materials of the porous body; and a binding step of heat-fusing at least part of the placed binder particles 52 to bind aggregate particles 51 together.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: July 9, 2019
    Assignee: NGK Insulators, Ltd.
    Inventors: Satoshi Sakashita, Masayuki Uchida
  • Patent number: 10232361
    Abstract: A honeycomb structural body 20 comprises a porous partition portion 22 which forms a plurality of cells each functioning as a flow path of a fluid, and in the partition portion 22, the average pore diameter is 10 to 20 ?m, and a wet area rate R (=S/V) which is the rate of a wet area S of pores to a volume V of the partition portion 22 is 0.000239 ?m?1 or more.
    Type: Grant
    Filed: March 25, 2016
    Date of Patent: March 19, 2019
    Assignee: NGK Insulators, Ltd.
    Inventors: Shogo Hirose, Hirotaka Yamamoto, Shiori Nakao, Shuji Ueda, Mitsuharu Ono, Satoshi Sakashita, Hiroyuki Nagaoka
  • Patent number: 10099166
    Abstract: A porous body constituting a porous partition wall 44 of a honeycomb filter 30 has a porosity P of 20% to 60%, a permeability k of 1 ?m2 or more and satisfies k?0.2823 P?10.404. The porous body is obtained by a method for producing, for example, includes (a) a step of acquiring porous body data representing a temporary porous body having porosity higher than target porosity, (b) a step of deriving information about a flow rate for each space voxel during passage of a fluid through inside of the porous body, (c) a step of preferentially replacing the voxel having a low flow rate among the space voxels with the object voxel, and adjusting the porosity of the porous body data to the target porosity, and (d) a step of forming a porous body based on the porous body data after replacement.
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: October 16, 2018
    Assignee: NGK Insulators, Ltd.
    Inventors: Satoshi Sakashita, Hiroyuki Nagaoka
  • Publication number: 20180268094
    Abstract: A method for producing a porous body, comprising a raw-material mixing step of mixing talc having an average particle size of 1 ?m or more and 18 ?m or less, alumina, an auxiliary raw material containing a material that undergoes a eutectic reaction with talc and being prepared in an amount so as to satisfy a weight ratio of 0.5% or more and 1.5% or less by weight relative to the talc, and a pore-forming agent, to provide green body, and a molding and firing step of molding the green body to provide a compact and firing this compact at a firing temperature of 1350° C. to 1440° C.
    Type: Application
    Filed: May 18, 2018
    Publication date: September 20, 2018
    Applicant: NGK Insulators, Ltd.
    Inventors: Satoshi SAKASHITA, Hiroyuki NAGAOKA, Takehide SHIMODA
  • Patent number: 9953419
    Abstract: A method for analyzing a microstructure of a porous body is, for example, a method using porous-body data in which positional information providing a position of a voxel of a porous body obtained by three-dimensional scanning is associated with voxel type information including information that allows determination as to whether the voxel is a spatial voxel representing a space or an object voxel representing an object. This method includes (a) a step of defining an imaginary surface that is in contact with at least one object voxel present on a surface of the porous body, and identifying, as opening-related voxels, spatial voxels that are in contact with the imaginary surface and spatial voxels that continuously lie in a linear direction from the imaginary surface; and (b) a step of analyzing a microstructure of the porous body on a basis of the opening-related voxels.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: April 24, 2018
    Assignee: NGK Insulators, Ltd.
    Inventors: Ayaka Sakai, Satoshi Sakashita, Hiroyuki Nagaoka
  • Patent number: 9885616
    Abstract: A ceramic body is heated to a predetermined temperature by using a furnace, and a cooling gas is ejected toward a first end face of the ceramic body so that the first end face of the ceramic body is cooled. At this time, the temperature of the first end face of the ceramic body is measured by a radiation thermometer provided on the same side from which the cooling gas is ejected, and the internal temperature is measured by a thermocouple provided in the ceramic body. Thereafter, a thermal shock resistance test in which actual use conditions are simulated is performed by obtaining the temperature gradient of the ceramic body from measurement results of the temperature of the first end face of the ceramic body and the internal temperature and checking the absence or presence of cracks that occurs to the ceramic body.
    Type: Grant
    Filed: August 26, 2015
    Date of Patent: February 6, 2018
    Assignee: NGK Insulators, Ltd.
    Inventors: Takahiko Nakatani, Akifumi Kawakami, Masaaki Ito, Yuki Fukumi, Satoshi Sakashita
  • Patent number: 9863300
    Abstract: A holding jig has a tubular jig base member, and a tubular expansion/contraction member disposed on an inner peripheral surface side of the tubular jig base member. Both end sides of the tubular expansion/contraction member are fixed to both end sides of the tubular jig base member along the whole periphery. A configuration of an inner peripheral surface of the tubular expansion/contraction member is smaller than a surface configuration of a pillar-like body (a honeycomb structure) to be held. On the other hand, a configuration of an inner peripheral surface of the tubular jig base member is larger than the surface configuration of the pillar-like body (the honeycomb structure) to be held.
    Type: Grant
    Filed: August 4, 2014
    Date of Patent: January 9, 2018
    Assignee: NGK Insulators, Ltd.
    Inventors: Satoshi Sakashita, Masayuki Uchida
  • Publication number: 20170287155
    Abstract: In a porous body, a surface layer thickness Ts takes a relatively small value satisfying P?0.54 Ts (formula (1)), the surface layer thickness Ts being derived by a microstructure analysis using the porous-body data that is prepared through three-dimensional scanning of a region including a surface (inflow plane 61) of the porous body. Here, P denotes a porosity [%] of the porous body, and 0%<P<100% and 0 ?m<Ts are assumed. The surface layer thickness Ts is derived as a distance in a thickness direction (X direction) between a surface-layer region start plane 92 in which a straight-pore opening ratio becomes 98% or less for the first time and a surface-layer region end plane 93 in which the straight-pore opening ratio becomes 1% or less for the first time.
    Type: Application
    Filed: March 23, 2017
    Publication date: October 5, 2017
    Applicant: NGK INSULATORS, LTD.
    Inventors: Ayaka SAKAI, Satoshi SAKASHITA, Shingo SOKAWA, Yuichi TAJIMA
  • Patent number: 9695724
    Abstract: A honeycomb catalyst body includes a tubular honeycomb base material having porous partition walls to define and form a plurality of cells extending as through channels of a fluid from one end surface from which the fluid flows in to the other end surface from which the fluid flows out, and a catalyst loaded onto the partition walls. In the honeycomb base material, at least one slit which is open in a side surface of the honeycomb base material is formed, and a width of the slit is from 1.0 to 10.0 mm.
    Type: Grant
    Filed: January 22, 2014
    Date of Patent: July 4, 2017
    Assignee: NGK Insulators, Ltd.
    Inventors: Satoshi Sakashita, Norihiro Wakida, Risyun Kin
  • Publication number: 20170102312
    Abstract: A CPU of an analysis apparatus performs a fluid analysis and derives transient distribution information that represents an accumulation distribution of a particulate layer on an inflow-side inner circumferential surface of a honeycomb structure at a time point after a short time interval ?t (step S130). The CPU then repeatedly performs a fluid analysis by taking into account the transient distribution information derived previous time to repeatedly derive transient distribution information (steps S130 to S150) and then derives post-transient-analysis distribution information that represents the accumulation distribution of the particulate layer at a later time point (step S160).
    Type: Application
    Filed: September 7, 2016
    Publication date: April 13, 2017
    Applicant: NGK INSULATORS, LTD.
    Inventors: Yukio MIYAIRI, Satoshi SAKASHITA, Kazuya MORI, Naoki YOSHIDA, Shingo SOKAWA, Kenji SUZUKI
  • Publication number: 20170072588
    Abstract: A method for manufacturing a honeycomb structure according to the present invention is a method for manufacturing a honeycomb structure provided with partitions forming a plurality of cells. This manufacturing method includes a structure formation process including a pore-forming material placement step of placing a pore-forming material for forming pores in the partitions, a raw material placement step of placing tabular grains and raw material grains such that the tabular grains are arranged in a predetermined direction with respect to the partition surfaces while the tabular grains and the raw material grains constitute a raw material for forming the partitions, and a sintering step of sintering the placed raw material. The honeycomb structure is produced by repeating the structure formation process a plurality of times.
    Type: Application
    Filed: September 7, 2016
    Publication date: March 16, 2017
    Applicant: NGK INSULATORS, LTD.
    Inventors: Satoshi SAKASHITA, Hiroyuki NAGAOKA
  • Publication number: 20170072589
    Abstract: A method for manufacturing a porous body includes a structure forming step that is repeatedly performed a plurality of times and includes: a pore-forming material placing step of placing a pore-forming material 50 for forming pores in the porous body; an aggregate placing step of placing aggregate particles 51 which are part of raw materials of the porous body; a binder placing step of placing binder particles 52 which are part of the raw materials of the porous body; and a binding step of heat-fusing at least part of the placed binder particles 52 to bind aggregate particles 51 together.
    Type: Application
    Filed: September 8, 2016
    Publication date: March 16, 2017
    Applicant: NGK INSULATORS, LTD.
    Inventors: Satoshi SAKASHITA, Masayuki UCHIDA
  • Publication number: 20160307318
    Abstract: A method for analyzing a microstructure of a porous body is, for example, a method using porous-body data in which positional information providing a position of a voxel of a porous body obtained by three-dimensional scanning is associated with voxel type information including information that allows determination as to whether the voxel is a spatial voxel representing a space or an object voxel representing an object. This method includes (a) a step of defining an imaginary surface that is in contact with at least one object voxel present on a surface of the porous body, and identifying, as opening-related voxels, spatial voxels that are in contact with the imaginary surface and spatial voxels that continuously lie in a linear direction from the imaginary surface; and (b) a step of analyzing a microstructure of the porous body on a basis of the opening-related voxels.
    Type: Application
    Filed: March 31, 2016
    Publication date: October 20, 2016
    Inventors: Ayaka SAKAI, Satoshi SAKASHITA, Hiroyuki NAGAOKA
  • Patent number: D772389
    Type: Grant
    Filed: January 7, 2014
    Date of Patent: November 22, 2016
    Assignee: NGK Insulators, Ltd.
    Inventors: Takayuki Ogata, Satoshi Sakashita