Patents by Inventor Satoshi Shibutani

Satoshi Shibutani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110091795
    Abstract: A fuel container for storing a fuel liquid for a fuel cell has a double wall structure including an inner container for storing a fuel liquid and an outer container for housing the inner container, and a material capable of retaining the fuel between the inner container and the outer container. A fuel cell pack includes a fuel cell and a fuel container for storing a fuel liquid for the fuel cell. The fuel cell pack includes a double wall exterior casing having an inner casing for housing the fuel cell and the fuel container and an outer casing for housing the inner casing, and a material capable of retaining the fuel between the inner casing and the outer casing.
    Type: Application
    Filed: December 27, 2010
    Publication date: April 21, 2011
    Applicant: PANASONIC CORPORATION
    Inventors: Takashi AKIYAMA, Junji Niikura, Kohji Yuasa, Yukihiro Okada, Satoshi Shibutani, Hideyuki Ueda
  • Patent number: 7855019
    Abstract: A method for operating a direct methanol fuel cell is provided. The fuel cell includes a fuel cell main body having a fuel electrode and an air electrode disposed in opposing positions on either side of an electrolyte film. In this method, an aqueous methanol solution is supplied directly to the fuel electrode. A quantity of the aqueous methanol solution supplied is controlled in accordance with an electric current value drawn from the fuel cell main body so as to minimize a quantity of unused methanol within a discharge fluid discharged from the fuel electrode.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: December 21, 2010
    Assignee: Panasonic Corporation
    Inventors: Katsumi Kozu, Toshihiko Ichinose, Masahiro Takada, Satoshi Shibutani
  • Publication number: 20100143812
    Abstract: A clean power supply unit with a high fuel utilization rate using a fuel cell is provided. The power supply unit of the present invention comprises a fuel cell using methanol as fuel; a secondary battery for supplying power to a load; a fuel cell control part for controlling the amount of fuel and/or air supplied to the above-mentioned fuel cell; and a power converter for converting the power output from the above-mentioned fuel cell to a predetermined voltage or current, supplying power to the load and/or the above-mentioned secondary battery and controlling the supplied power so as to fall within a predetermined range including the value at which the amount of methanol discharged from the above-mentioned fuel cell becomes minimized.
    Type: Application
    Filed: February 19, 2010
    Publication date: June 10, 2010
    Applicant: PANASONIC CORPORATION
    Inventors: Katsumi Kozu, Toshihiko Ichinose, Masahiro Takada, Satoshi Shibutani, So Kuranaka
  • Publication number: 20100119891
    Abstract: A method for operating a direct methanol fuel cell is provided. The fuel cell includes a fuel cell main body having a fuel electrode and an air electrode disposed in opposing positions on either side of an electrolyte film. In this method, an aqueous methanol solution is supplied directly to the fuel electrode. A quantity of the aqueous methanol solution supplied is controlled in accordance with an electric current value drawn from the fuel cell main body so as to minimize a quantity of unused methanol within a discharge fluid discharged from the fuel electrode.
    Type: Application
    Filed: January 14, 2010
    Publication date: May 13, 2010
    Applicant: Matsushita Electric Industrial Co., Ltd.
    Inventors: Katsumi Kozu, Toshihiko Ichinose, Masahiro Takada, Satoshi Shibutani
  • Publication number: 20100119915
    Abstract: A method for operating a direct methanol fuel cell is provided. The fuel cell includes a fuel cell main body having a fuel electrode and an air electrode disposed in opposing positions on either side of an electrolyte film. In this method, an aqueous methanol solution is supplied directly to the fuel electrode. A quantity of the aqueous methanol solution supplied is controlled in accordance with an electric current value drawn from the fuel cell main body so as to minimize a quantity of unused methanol within a discharge fluid discharged from the fuel electrode.
    Type: Application
    Filed: January 14, 2010
    Publication date: May 13, 2010
    Applicant: Matsushita Electric Industrial Co., Ltd.
    Inventors: Katsumi Kozu, Toshihiko Ichinose, Masahiro Takada, Satoshi Shibutani
  • Publication number: 20100112451
    Abstract: A negative electrode 100 for a nonaqueous electrolytic secondary cell includes a current collector 1 and a plurality of active material bodies 2 formed on a surface of the current collector 1 at intervals; each active material body 2 contains a material for occluding or releasing lithium; and a plurality of projections 3 are formed on a part of a side surface of each active material body 2.
    Type: Application
    Filed: October 9, 2007
    Publication date: May 6, 2010
    Inventors: Satoshi Shibutani, Hideharu Takezawa, Kazuyoshi Honda, Toshitada Sato
  • Patent number: 7687167
    Abstract: A clean power supply unit with a high fuel utilization rate using a fuel cell is provided. The power supply unit of the present invention comprises a fuel cell using methanol as fuel; a secondary battery for supplying power to a load; a fuel cell control part for controlling the amount of fuel and/or air supplied to the above-mentioned fuel cell; and a power converter for converting the power output from the above-mentioned fuel cell to a predetermined voltage or current, supplying power to the load and/or the above-mentioned secondary battery and controlling the supplied power so as to fall within a predetermined range including the value at which the amount of methanol discharged from the above-mentioned fuel cell becomes minimized.
    Type: Grant
    Filed: July 19, 2004
    Date of Patent: March 30, 2010
    Assignee: Panasonic Corporation
    Inventors: Katsumi Kozu, Toshihiko Ichinose, Masahiro Takada, Satoshi Shibutani, So Kuranaka
  • Patent number: 7682716
    Abstract: A method for operating a direct methanol fuel cell is provided. The fuel cell includes a fuel cell main body having a fuel electrode and an air electrode disposed in opposing positions on either side of an electrolyte film. In this method, an aqueous methanol solution is supplied directly to the fuel electrode. A quantity of the aqueous methanol solution supplied is controlled in accordance with an electric current value drawn from the fuel cell main body so as to minimize a quantity of unused methanol within a discharge fluid discharged from the fuel electrode.
    Type: Grant
    Filed: June 21, 2004
    Date of Patent: March 23, 2010
    Assignee: Panasonic Corporation
    Inventors: Katsumi Kozu, Toshihiko Ichinose, Masahiro Takada, Satoshi Shibutani
  • Patent number: 7670705
    Abstract: A fuel cell system includes: a fuel cell including an anode, a cathode, and an electrolyte interposed between the anode and the cathode; and a purifying apparatus including a catalyst layer that purifies an effluent discharged from the anode. The purifying apparatus has a porous sheet including the catalyst layer and two flow paths disposed on both sides thereof. One of the flow paths has an inlet into which the effluent discharged from the anode is introduced, and the other flow path has an inlet into which air is introduced and an outlet. The effluent discharged from the anode is passed through the porous sheet for purification and then discharged from the outlet.
    Type: Grant
    Filed: March 2, 2005
    Date of Patent: March 2, 2010
    Assignee: Panasonic Corporation
    Inventors: Hideyuki Ueda, Takashi Akiyama, Kohji Yuasa, Shinsuke Fukuda, Yukihiro Okada, Satoshi Shibutani
  • Publication number: 20090311602
    Abstract: To accelerate a film formation rate in forming a negative electrode active material film by vapor deposition using an evaporation source containing Si as a principal component, and to provide an electrode for lithium batteries which is superior in productivity, and keeps the charge and discharge capacity at high level are contemplated. The method of manufacturing an electrode for lithium batteries of the present invention includes the steps of: providing an evaporation source containing Si and Fe to give a molar ratio of Fe/(Si+Fe) being no less than 0.0005 and no greater than 0.15; and vapor deposition by melting the evaporation source and permitting evaporation to allow for vapor deposition on a collector directly or through an underlying layer. The electrode for lithium batteries of the present invention includes a collector, and a negative electrode active material film which includes SiFeyOx (wherein, 0<x<2, and 0.0001?y/(1+y)?0.
    Type: Application
    Filed: January 31, 2008
    Publication date: December 17, 2009
    Inventors: Satoshi Shibutani, Yuko Ogawa, Kazuyoshi Honda
  • Patent number: 7582371
    Abstract: A fuel cell system includes: a dilute tank that stores an aqueous solution of liquid fuel and supplies the solution to the anode of a fuel cell; a fuel tank connected to the dilute tank via a first controlling section; a water tank connected to the dilute tank via a second controlling section; and controlling means including a current detector which measures the amount of the fuel consumed by the fuel cell from the amount of power generation. The controlling means controls the first controlling section based on the measured amount of fuel consumption and further includes correcting means for measuring a component of a gas discharged from the cathode, calculating the amount of the fuel which has crossed over from the anode to the cathode based on the measured component, and correcting the measured amount of fuel consumption based on the calculated amount of fuel crossover.
    Type: Grant
    Filed: June 2, 2004
    Date of Patent: September 1, 2009
    Assignee: Panasonic Corporation
    Inventors: Takashi Akiyama, Yukihiro Okada, Kohji Yuasa, Satoshi Shibutani, Hideyuki Ueda
  • Patent number: 7498097
    Abstract: In order to prevent the crossover of an organic fuel such as methanol in a fuel cell and to exhibit excellent electricity generation characteristics without impairing the utilization efficiency of the fuel, at least either of (1) a discontinuous catalyst layer being formed on a surface of an anode catalyst layer and having a higher density (existence probability) of platinum type catalyst than the anode catalyst layer and (2) an electrolyte polymer layer is formed at the interface between the anode catalyst layer and a polymer electrolyte membrane.
    Type: Grant
    Filed: December 22, 2004
    Date of Patent: March 3, 2009
    Assignee: Panasonic Corporation
    Inventors: Hideyuki Ueda, Takashi Akiyama, Kohji Yuasa, Yukihiro Okada, Satoshi Shibutani
  • Publication number: 20080213647
    Abstract: A fuel cell system, comprising a fuel cell having an anode, a cathode, and an electrolyte interposed therebetween and a purification device having a catalyst layer purifying substances discharged from the anode. The fuel cell system is characterized in that the purification device comprises a porous sheet having a catalyst layer and two flow passages disposed on both sides of the porous sheet, an inlet to which the substances discharged from the anode is led is formed in one flow passage, an inlet to which air is led and an outlet are formed in the other flow passage, and the substances discharged from the anode are discharged from the outlet after being purified through the porous sheet.
    Type: Application
    Filed: March 2, 2005
    Publication date: September 4, 2008
    Inventors: Hideyuki Ueda, Takashi Akiyama, Kohji Yuasa, Shinsuke Fukuda, Yukihiro Okada, Satoshi Shibutani
  • Publication number: 20070125786
    Abstract: A fuel container for storing a fuel liquid for a fuel cell has a double wall structure including an inner container for storing a fuel liquid and an outer container for housing the inner container, and a material capable of retaining the fuel between the inner container and the outer container. A fuel cell pack includes a fuel cell and a fuel container for storing a fuel liquid for the fuel cell. The fuel cell pack includes a double wall exterior casing having an inner casing for housing the fuel cell and the fuel container and an outer casing for housing the inner casing, and a material capable of retaining the fuel between the inner casing and the outer casing.
    Type: Application
    Filed: January 28, 2005
    Publication date: June 7, 2007
    Inventors: Takashi Akiyama, Junji Niikura, Kohji Yuasa, Yukihiro Okada, Satoshi Shibutani, Hideyuki Ueda
  • Publication number: 20070031733
    Abstract: In order to enhance charge and discharge efficiency and to improve cycle characteristics by increasing a facing area between a positive electrode active material and a negative electrode active material, in a negative electrode for lithium secondary battery having a current collector and an active material layer carried on the current collector, the active material layer includes a plurality of columnar particles. The columnar particles include an element of silicon, and are tilted toward the normal direction of the current collector. Angle ? formed between the columnar particles and the normal direction of the current collector is preferably 10°??<90°.
    Type: Application
    Filed: March 1, 2006
    Publication date: February 8, 2007
    Inventors: Yasutaka Kogetsu, Masaya Ugaji, Keiichi Takahashi, Shinji Mino, Nobuaki Nagao, Satoshi Shibutani, Kazuyoshi Honda
  • Patent number: 7081317
    Abstract: It is difficult to realize a small fuel cell capable of being installed in mobile device by merely downsizing a conventional fuel cell without changing the configuration. The present invention provides a small fuel cell employing a polymer electrolyte thin film, by using a semiconductor process. A polymer electrolyte thin film fuel cell in accordance with the present invention comprises: a substrate having a plurality of openings; an electrolyte membrane-electrode assembly formed on the substrate so as to cover each of the openings, the assembly comprising a first catalyst electrode layer, a hydrogen ion conductive polymer electrolyte membrane and a second catalyst electrode layer which are formed successively; and fuel and oxidant supply means for supplying a fuel or an oxidant gas to the first catalyst electrode layer through the openings, and an oxidant gas or a fuel to the second catalyst electrode layer.
    Type: Grant
    Filed: March 26, 2002
    Date of Patent: July 25, 2006
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Satoru Fujii, Kazuhito Hatoh, Masato Hosaka, Kohji Yuasa, Yasutaka Noguchi, Satoshi Shibutani, Aoi Tanaka, Nobuhiko Hojo, Yukihiro Okada
  • Publication number: 20060083970
    Abstract: The present invention provides a solid oxide fuel cell with superior power generation characteristics even at lower temperatures (for example, in a range of 200° C. to 600° C. and preferably in a range of 400° C. to 600° C.) and a method for manufacturing the same. The solid oxide fuel cell is such that the solid oxide fuel cell includes an anode, a cathode, and a first solid oxide held between the anode and the cathode, the anode includes metal particles (2), an anode catalyst (1), and ion conducting bodies (3), the anode catalyst (1) is attached to the surface of the metal particles (2), and the first solid oxide and the ion conducting bodies (3) have either one of an ionic conductivity that is selected from oxide ionic conductivity and hydrogen ionic conductivity.
    Type: Application
    Filed: May 13, 2004
    Publication date: April 20, 2006
    Applicant: Matsushita Electric Co., Ltd.
    Inventors: Satoshi Shibutani, Yukihiro Okada, Kohji Yuasa, Noboru Taniguchi, Norihisa Mino, Junji Niikura
  • Publication number: 20060019131
    Abstract: A method for activating a direct oxidation fuel cell including an anode, a cathode, and a proton-conductive electrolyte membrane interposed between the anode and the cathode is provided. The anode and the cathode each have a catalyst layer on a face in contact with the proton-conductive electrolyte membrane. This method activates the fuel cell by passing a current through the fuel cell from an external power source, with the positive electrode and the negative electrode of the external power source connected to the anode and the cathode of the fuel cell, respectively, while supplying an organic fuel and an inert gas to the anode and the cathode, respectively.
    Type: Application
    Filed: April 28, 2005
    Publication date: January 26, 2006
    Inventors: Takashi Akiyama, Yukihiro Okada, Satoshi Shibutani, Hideyuki Ueda, Masahiro Takada
  • Publication number: 20050142433
    Abstract: In order to prevent the crossover of an organic fuel such as methanol in a fuel cell and to exhibit excellent electricity generation characteristics without impairing the utilization efficiency of the fuel, at least either of (1) a discontinuous catalyst layer being formed on a surface of an anode catalyst layer and having a higher density (existence probability) of platinum type catalyst than the anode catalyst layer and (2) an electrolyte polymer layer is formed at the interface between the anode catalyst layer and a polymer electrolyte membrane.
    Type: Application
    Filed: December 22, 2004
    Publication date: June 30, 2005
    Inventors: Hideyuki Ueda, Takashi Akiyama, Kohji Yuasa, Yukihiro Okada, Satoshi Shibutani
  • Patent number: RE41695
    Abstract: In a fuel cell system, leakage of a fuel and a by-product produced in oxidizing a fuel, and leakage thereof out of a fuel cell by evaporation are prevented. For this purpose, in a fuel cell system comprising an electrogenerating portion having a fuel electrode, an oxidant electrode and an electrolyte sandwiched between the fuel electrode and the oxidant electrode; a fuel accommodating container accommodating a fuel to be supplied to the fuel electrode; a fuel supplying portion supplying a fuel from the fuel accommodating container to the electrogenerating portion; and a fuel discharging portion connected to the fuel electrode, the fuel accommodating container, the fuel supplying portion, the fuel electrode and the fuel discharging portion are air-tightly connected.
    Type: Grant
    Filed: December 6, 2004
    Date of Patent: September 14, 2010
    Assignee: Panasonic Corporation
    Inventors: Nobuhiko Hojo, Aoi Muta, Satoshi Shibutani, Yukihiro Okada