Patents by Inventor Satoshi SUGANUMA

Satoshi SUGANUMA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11485644
    Abstract: Provided are the following: an MWW type zeolite which has many Brønsted acid sites when in the form of a proton type and which is highly suitable as a cracking catalyst for cumene; a method for producing same; and an application of same. The present invention provides an MWW type zeolite in which the ratio (B/A) of the peak intensity (B) attributable to tetracoordinate aluminum relative to the peak intensity (A) attributable to hexacoordinate aluminum is 2 or more in 27Al MAS NMR, when measured as an ammonium type. The present invention also provides a method for producing an MWW type zeolite, the method having a step for carrying out a hydrothermal synthesis reaction in the presence of: a seed crystal of an MWW type zeolite containing no organic structure-directing agent; and a reaction mixture containing a silica source, an alumina source, an alkali source, an organic structure-directing agent, and water. The reaction mixture satisfies the following molar ratio: X/SiO2<0.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: November 1, 2022
    Assignees: Mitsui Mining & Smelting Co., Ltd., NATIONAL UNIVERSITY CORPORATION TOTTORI UNIVERSITY, NATIONAL UNIVERSITY CORPORATION YOKOHAMA NATIONAL UNIVERSITY
    Inventors: Yoshihiro Kamimura, Akira Endou, Yasuo Yamazaki, Naonobu Katada, Satoshi Suganuma, Yoshihiro Kubota, Satoshi Inagaki
  • Patent number: 11447396
    Abstract: Provided are the following: an MWW type zeolite which has many Brønsted acid sites when in the form of a proton type and which is highly suitable as a cracking catalyst for cumene; a method for producing same; and an application of same. The present invention provides an MWW type zeolite in which the ratio (B/A) of the peak intensity (B) attributable to tetracoordinate aluminum relative to the peak intensity (A) attributable to hexacoordinate aluminum is 2 or more in 27Al MAS NMR, when measured as an ammonium type. The present invention also provides a method for producing an MWW type zeolite, the method having a step for carrying out a hydrothermal synthesis reaction in the presence of: a seed crystal of an MWW type zeolite containing no organic structure-directing agent; and a reaction mixture containing a silica source, an alumina source, an alkali source, an organic structure-directing agent, and water. The reaction mixture satisfies the following molar ratio: X/SiO2<0.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: September 20, 2022
    Assignees: Mitsui Mining & Smelting Co., Ltd., NATIONAL UNIVERSITY CORPORATION TOTTORI UNIVERSITY, NATIONAL UNIVERSITY CORPORATION YOKOHAMA NATIONAL UNIVERSITY
    Inventors: Yoshihiro Kamimura, Akira Endou, Yasuo Yamazaki, Naonobu Katada, Satoshi Suganuma, Yoshihiro Kubota, Satoshi Inagaki
  • Patent number: 11065606
    Abstract: The purpose of the present invention is to provide a metal-substituted beta zeolite that exhibits a more excellent catalytic performance than conventional one, and a method for producing the same. The present invention provides a metal-substituted beta zeolite by subjecting an alkali metal-form beta zeolite produced without using an organic structure-directing agent to ion exchange with ammonium ion and then, using a filter cake procedure, to ion exchange with copper ion or iron(II) ion. The present invention also provides a metal-substituted beta zeolite which has been ion exchanged with copper ion or iron(II) ion and in which the amount of Lewis acid sites is greater than the amount of Bronsted acid sites when the amount of Bronsted acid sites and the amount of Lewis acid sites are measured by ammonia infrared-mass spectroscopy temperature-programmed desorption on the as-produced state.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: July 20, 2021
    Assignees: Mitsui Mining & Smelting Co., Ltd., NATIONAL UNIVERSITY CORPORATION TOTTORI UNIVERSITY, NATIONAL UNIVERSITY CORPORATION YOKOHAMA NATIONAL UNIVERSITY
    Inventors: Yoshihiro Kubota, Satoshi Inagaki, Naonobu Katada, Satoshi Suganuma, Yasuo Yamazaki, Takahiro Kogawa
  • Publication number: 20210002140
    Abstract: Provided are the following: an MWW type zeolite which has many Brønsted acid sites when in the form of a proton type and which is highly suitable as a cracking catalyst for cumene; a method for producing same; and an application of same. The present invention provides an MWW type zeolite in which the ratio (B/A) of the peak intensity (B) attributable to tetracoordinate aluminum relative to the peak intensity (A) attributable to hexacoordinate aluminum is 2 or more in 27Al MAS NMR, when measured as an ammonium type. The present invention also provides a method for producing an MWW type zeolite, the method having a step for carrying out a hydrothermal synthesis reaction in the presence of: a seed crystal of an MWW type zeolite containing no organic structure-directing agent; and a reaction mixture containing a silica source, an alumina source, an alkali source, an organic structure-directing agent, and water. The reaction mixture satisfies the following molar ratio: X/SiO2<0.
    Type: Application
    Filed: November 28, 2018
    Publication date: January 7, 2021
    Inventors: Yoshihiro KAMIMURA, Akira ENDOU, Yasuo YAMAZAKI, Naonobu KATADA, Satoshi SUGANUMA, Yoshihiro KUBOTA, Satoshi INAGAKI
  • Publication number: 20200338539
    Abstract: The purpose of the present invention is to provide a metal-substituted beta zeolite that exhibits a more excellent catalytic performance than conventional one, and a method for producing the same. The present invention provides a metal-substituted beta zeolite by subjecting an alkali metal-form beta zeolite produced without using an organic structure-directing agent to ion exchange with ammonium ion and then, using a filter cake procedure, to ion exchange with copper ion or iron(II) ion. The present invention also provides a metal-substituted beta zeolite which has been ion exchanged with copper ion or iron(II) ion and in which the amount of Lewis acid sites is greater than the amount of Bronsted acid sites when the amount of Bronsted acid sites and the amount of Lewis acid sites are measured by ammonia infrared-mass spectroscopy temperature-programmed desorption on the as-produced state.
    Type: Application
    Filed: October 25, 2018
    Publication date: October 29, 2020
    Inventors: Yoshihiro KUBOTA, Satoshi INAGAKI, Naonobu KATADA, Satoshi SUGANUMA, Yasuo YAMAZAKI, Takahiro KOGAWA