Patents by Inventor Satoshi Yanagi

Satoshi Yanagi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9257168
    Abstract: An example magnetic recording device includes a magnetic recording section and a magnetization oscillator and a first nonmagnetic layer disposed between the magnetic recording section and the magnetization oscillator. The magnetic recording section includes a first ferromagnetic layer with a magnetization substantially fixed in a first direction; a second ferromagnetic layer with a variable magnetization direction; and a second nonmagnetic layer disposed between the first ferromagnetic layer and the second ferromagnetic layer. The magnetization oscillator includes a third ferromagnetic layer with a variable magnetization direction; a fourth ferromagnetic layer with a magnetization substantially fixed in a second direction; and a third nonmagnetic layer disposed between the third ferromagnetic layer and the fourth ferromagnetic layer.
    Type: Grant
    Filed: November 12, 2013
    Date of Patent: February 9, 2016
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shiho Nakamura, Hirofumi Morise, Satoshi Yanagi, Daisuke Saida, Akira Kikitsu
  • Patent number: 9200314
    Abstract: A method for accurately and easily detecting a synthetic siRNA, for example, a siRNA in which the 3? end is DNA, and a kit used for the method are provided. The present invention relates to a method for detecting a siRNA in which the 3? end is DNA, comprising: (a) adding polydeoxyadenosine to the 3? DNA end of at least one strand of the siRNA to be detected to produce a polydeoxyadenosine-added RNA; (b) annealing a polydeoxythymidine primer having a tag sequence at its 5? side to the polydeoxyadenosine-added RNA and synthesizing DNA from the primer by a reverse transcription; and (c) detecting the DNA synthesized in (b).
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: December 1, 2015
    Assignee: TAKARA BIO INC.
    Inventors: Satoshi Yanagi, Eiji Kobayashi, Takashi Uemori, Hiroyuki Mukai
  • Publication number: 20140078807
    Abstract: An example magnetic recording device includes a magnetic recording section and a magnetization oscillator and a first nonmagnetic layer disposed between the magnetic recording section and the magnetization oscillator. The magnetic recording section includes a first ferromagnetic layer with a magnetization substantially fixed in a first direction; a second ferromagnetic layer with a variable magnetization direction; and a second nonmagnetic layer disposed between the first ferromagnetic layer and the second ferromagnetic layer. The magnetization oscillator includes a third ferromagnetic layer with a variable magnetization direction; a fourth ferromagnetic layer with a magnetization substantially fixed in a second direction; and a third nonmagnetic layer disposed between the third ferromagnetic layer and the fourth ferromagnetic layer.
    Type: Application
    Filed: November 12, 2013
    Publication date: March 20, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Shiho NAKAMURA, Hirofumi MORISE, Satoshi YANAGI, Daisuke SAIDA, Akira KIKITSU
  • Patent number: 8611142
    Abstract: An example magnetic recording device includes a laminated body. The laminated body includes a first ferromagnetic layer with a magnetization substantially fixed in a first direction; a second ferromagnetic layer with a variable magnetization direction; a first nonmagnetic layer disposed between the first ferromagnetic layer and the second ferromagnetic layer; a third ferromagnetic layer with a variable magnetization direction; and a fourth ferromagnetic layer with a magnetization substantially fixed in a second direction, wherein at least one of the first and second direction is generally perpendicular to the film plane. The magnetization direction of the second ferromagnetic layer is determinable in response to the orientation of a current, by passing the current in a direction generally perpendicular to the film plane of the layers of the laminated body and the magnetization of the third ferromagnetic layer is able to undergo precession by passing the current.
    Type: Grant
    Filed: November 17, 2011
    Date of Patent: December 17, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shiho Nakamura, Hirofumi Morise, Satoshi Yanagi, Daisuke Saida, Akira Kikitsu
  • Patent number: 8530987
    Abstract: A magnetic memory includes a magnetoresistive element. The magnetoresistive element includes a reference layer having an invariable magnetization direction, a storage layer having a variable magnetization direction, and a spacer layer provided between the reference layer and the storage layer. The storage layer has a multilayered structure including first and second magnetic layers, the second magnetic layer is provided between the first magnetic layer and the spacer layer and has a magnetic anisotropy energy lower than that of the first magnetic layer, and an exchange coupling constant Jex between the first magnetic layer and the second magnetic layer is not more than 5 erg/cm2.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: September 10, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hisanori Aikawa, Tadashi Kai, Masahiko Nakayama, Sumio Ikegawa, Naoharu Shimomura, Eiji Kitagawa, Tatsuya Kishi, Jyunichi Ozeki, Hiroaki Yoda, Satoshi Yanagi
  • Patent number: 8531875
    Abstract: According to one embodiment, a magnetic memory includes at least one memory cell including a magnetoresistive element, and first and second electrodes. The element includes a first magnetic layer, a tunnel barrier layer, a second magnetic layer, and a third magnetic layer provided on the second magnetic layer and having a magnetization antiparallel to the magnetization direction of the second magnetic layer. A diameter of an upper surface of the first magnetic layer is smaller than that of a lower surface of the tunnel barrier layer. A diameter of a lower surface of the second magnetic layer is not more than that of an upper surface of the tunnel barrier layer.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: September 10, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Satoshi Yanagi, Eiji Kitagawa, Masahiko Nakayama, Jyunichi Ozeki, Hisanori Aikawa, Naoharu Shimomura, Masatoshi Yoshikawa, Minoru Amano, Shigeki Takahashi, Hiroaki Yoda
  • Patent number: 8420499
    Abstract: A method of forming a concave-convex pattern according to an embodiment includes: forming a guide pattern on a base material, the guide pattern having a convex portion; forming a formative layer on the guide pattern, the formative layer including a stacked structure formed by stacking a first layer and a second layer, the first layer including at least one element selected from a first metal element and a metalloid element, the second layer including a second metal element different from the first metal element; selectively leaving the formative layer only at side faces of the convex portions by performing etching on the formative layer; removing the guide pattern; and forming the concave-convex pattern in the base material by performing etching on the base material, with the remaining formative layer being used as a mask.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: April 16, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tomotaka Ariga, Yuichi Ohsawa, Junichi Ito, Yoshinari Kurosaki, Saori Kashiwada, Toshiro Hiraoka, Minoru Amano, Satoshi Yanagi
  • Publication number: 20120241884
    Abstract: According to one embodiment, a magnetic memory includes a magnetoresistive element. The magnetoresistive element includes a reference layer having an invariable magnetization direction, a storage layer having a variable magnetization direction, and a spacer layer provided between the reference layer and the storage layer. The storage layer has a multilayered structure including first and second magnetic layers, the second magnetic layer is provided between the first magnetic layer and the spacer layer and has a magnetic anisotropy energy lower than that of the first magnetic layer, and an exchange coupling constant Jex between the first magnetic layer and the second magnetic layer is not more than 5 erg/cm2.
    Type: Application
    Filed: March 28, 2012
    Publication date: September 27, 2012
    Inventors: Hisanori AIKAWA, Tadashi Kai, Masahiko Nakayama, Sumio Ikegawa, Naoharu Shimomura, Eiji Kitagawa, Tatsuya Kishi, Jyunichi Ozeki, Hiroaki Yoda, Satoshi Yanagi
  • Publication number: 20120230091
    Abstract: According to one embodiment, a magnetic memory includes at least one memory cell including a magnetoresistive element, and first and second electrodes. The element includes a first magnetic layer, a tunnel barrier layer, a second magnetic layer, and a third magnetic layer provided on the second magnetic layer and having a magnetization antiparallel to the magnetization direction of the second magnetic layer. A diameter of an upper surface of the first magnetic layer is smaller than that of a lower surface of the tunnel barrier layer. A diameter of a lower surface of the second magnetic layer is not more than that of an upper surface of the tunnel barrier layer.
    Type: Application
    Filed: March 21, 2012
    Publication date: September 13, 2012
    Inventors: Satoshi YANAGI, Eiji KITAGAWA, Masahiko NAKAYAMA, Jyunichi OZEKI, Hisanori AIKAWA, Naoharu SHIMOMURA, Masatoshi YOSHIKAWA, Minoru AMANO, Shigeki TAKAHASHI, Hiroaki YODA
  • Publication number: 20120115250
    Abstract: A method of forming a concave-convex pattern according to an embodiment includes: forming a guide pattern on a base material, the guide pattern having a convex portion; forming a formative layer on the guide pattern, the formative layer including a stacked structure formed by stacking a first layer and a second layer, the first layer including at least one element selected from a first metal element and a metalloid element, the second layer including a second metal element different from the first metal element; selectively leaving the formative layer only at side faces of the convex portions by performing etching on the formative layer; removing the guide pattern; and forming the concave-convex pattern in the base material by performing etching on the base material, with the remaining formative layer being used as a mask.
    Type: Application
    Filed: November 18, 2011
    Publication date: May 10, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Tomotaka Ariga, Yuichi Ohsawa, Junichi Ito, Yoshinari Kurosaki, Saori Kashiwada, Toshiro Hiraoka, Minoru Amano, Satoshi Yanagi
  • Publication number: 20120061784
    Abstract: An example magnetic recording device includes a laminated body. The laminated body includes a first ferromagnetic layer with a magnetization substantially fixed in a first direction; a second ferromagnetic layer with a variable magnetization direction; a first nonmagnetic layer disposed between the first ferromagnetic layer and the second ferromagnetic layer; a third ferromagnetic layer with a variable magnetization direction; and a fourth ferromagnetic layer with a magnetization substantially fixed in a second direction, wherein at least one of the first and second direction is generally perpendicular to the film plane. The magnetization direction of the second ferromagnetic layer is determinable in response to the orientation of a current, by passing the current in a direction generally perpendicular to the film plane of the layers of the laminated body and the magnetization of the third ferromagnetic layer is able to undergo precession by passing the current.
    Type: Application
    Filed: November 17, 2011
    Publication date: March 15, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Shiho NAKAMURA, Hirofumi MORISE, Satoshi YANAGI, Daisuke SAIDA, Akira KIKITSU
  • Publication number: 20120021420
    Abstract: A method for accurately and easily detecting a synthetic siRNA, for example, a siRNA in which the 3? end is DNA, and a kit used for the method are provided. The present invention relates to a method for detecting a siRNA in which the 3? end is DNA, comprising: (a) adding polydeoxyadenosine to the 3? DNA end of at least one strand of the siRNA to be detected to produce a polydeoxyadenosine-added RNA; (b) annealing a polydeoxythymidine primer having a tag sequence at its 5? side to the polydeoxyadenosine-added RNA and synthesizing DNA from the primer by a reverse transcription; and (c) detecting the DNA synthesized in (b).
    Type: Application
    Filed: July 20, 2011
    Publication date: January 26, 2012
    Applicant: TAKARA BIO INC.
    Inventors: Satoshi YANAGI, Eiji KOBAYASHI, Takashi UEMORI, Hiroyuki MUKAI
  • Patent number: 8085582
    Abstract: A magnetic recording device includes: a laminated body including: a first ferromagnetic layer with a magnetization substantially fixed in a first direction; a second ferromagnetic layer with a variable magnetization direction; a first nonmagnetic layer disposed between the first ferromagnetic layer and the second ferromagnetic layer; and a third ferromagnetic layer with a variable magnetization direction. The magnetization direction of the second ferromagnetic layer is determinable in response to the orientation of a current, by allowing electrons spin-polarized by passing a current in a direction generally perpendicular to the film plane of the layers of the laminated body to act on the second ferromagnetic layer, and by allowing a magnetic field generated by precession of the magnetization of the third ferromagnetic layer to act on the second ferromagnetic layer.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: December 27, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shiho Nakamura, Hirofumi Morise, Satoshi Yanagi, Daisuke Saida, Akira Kikitsu
  • Patent number: 8077509
    Abstract: A magnetic memory is provided with a memory cell. The memory cell includes a magnetic recording element, an interconnection to generate a radio-frequency current-induced magnetic field and a ground line. The magnetic recording element is provided with a first magnetic layer whose magnetization direction is substantially fixed, a magnetic recording layer whose magnetization direction is substantially reversed by spin-polarized electrons passing through the magnetic recording layer and a first nonmagnetic layer provided between the first magnetic layer and the magnetic recording layer. The interconnection is provided above the magnetic recording element to generate a radio-frequency current-induced magnetic field acting in a direction substantially perpendicular to a magnetization easy axis of the magnetic recording layer. The ground line is provided on a side opposite to the magnetic recording element with respect to the interconnection.
    Type: Grant
    Filed: February 10, 2009
    Date of Patent: December 13, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Satoshi Yanagi, Yuichi Ohsawa, Shiho Nakamura, Daisuke Saida, Hirofumi Morise
  • Patent number: 7931976
    Abstract: A magnetic recording element includes a multilayer having a surface and a pair of electrodes. The multilayer has a first magnetic fixed layer whose magnetization is substantially fixed in a first direction substantially perpendicular to the surface. The multilayer also has a second magnetic fixed layer whose magnetization is substantially fixed in a second direction opposite to the first direction substantially perpendicular to the surface. A third magnetic layer is provided between the first and second magnetic layers. The direction of magnetization of the third ferromagnetic layer is variable. A first intermediate layer is provided between the first and the third magnetic layers. A second intermediate layer is provided between the second and the third magnetic layers. The pair of electrodes is capable of supplying an electric current flowing in a direction substantially perpendicular to the surface to the multilayer.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: April 26, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yuichi Ohsawa, Shiho Nakamura, Hirofumi Morise, Satoshi Yanagi, Daisuke Saida
  • Patent number: 7889543
    Abstract: A magnetic memory element is provided with first and second ferromagnetic fixed layers, a ferromagnetic memory layer, nonmagnetic first and second intermediate layers. The memory layer is disposed between the first and second fixed layers, and has a variable magnetization direction. In order to cancel asymmetry of a write-in current of the element, the element is provided so that the memory layer receives a larger perpendicular stray field from the first fixed layer than from the second fixed layer, and then a magnetization direction of a portion of the memory layer being nearest to the first intermediate layer and the magnetization direction of the first fixed layer are antiparallel to each other whenever a magnetization direction of a portion of the memory layer being nearest to the second intermediate layer and the magnetization direction of the second fixed layer are parallel to each other, and vice versa.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: February 15, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hirofumi Morise, Shiho Nakamura, Yuichi Ohsawa, Satoshi Yanagi, Daisuke Saida
  • Patent number: D1001739
    Type: Grant
    Filed: December 9, 2021
    Date of Patent: October 17, 2023
    Assignee: JAPAN AVIATION ELECTRONICS INDUSTRY, LIMITED
    Inventors: Michael Zayc, David Schneider, Satoshi Yanagi
  • Patent number: D1001744
    Type: Grant
    Filed: December 9, 2021
    Date of Patent: October 17, 2023
    Assignee: JAPAN AVIATION ELECTRONICS INDUSTRY, LIMITED
    Inventors: Michael Zayc, David Schneider, Satoshi Yanagi
  • Patent number: D1002544
    Type: Grant
    Filed: December 9, 2021
    Date of Patent: October 24, 2023
    Assignee: JAPAN AVIATION ELECTRONICS INDUSTRY, LIMITED
    Inventors: Michael Zayc, David Schneider, Satoshi Yanagi
  • Patent number: D1002545
    Type: Grant
    Filed: December 9, 2021
    Date of Patent: October 24, 2023
    Assignee: JAPAN AVIATION ELECTRONICS INDUSTRY, LIMITED
    Inventors: Michael Zayc, David Schneider, Satoshi Yanagi