Patents by Inventor Satyabrata Raychaudhuri
Satyabrata Raychaudhuri has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240209477Abstract: This disclosure relates in general to three dimensional (“3D”) printers having a configuration that prepares a three-dimensional object by using a feedstock comprising a metal or a polymer compound and a carbon coating formed on a surface of the compound. This disclosure also relates to such feedstocks and their preparation methods. This disclosure further relates to 3D composite objects prepared by using such printers and feedstocks. This disclosure also relates to carbon containing photocurable formulations and methods for their preparation. This disclosure further relates to electrically conducting 3D polymer composites prepared by using such carbon containing photocurable formulations.Type: ApplicationFiled: March 11, 2024Publication date: June 27, 2024Applicant: Yazaki CorporationInventors: Satyabrata Raychaudhuri, Yongan Yan, Leonid Grigorian
-
Publication number: 20230322560Abstract: The present invention provides an efficient and effective method to produce a graphene material by a high shear mechanical process to exfoliate a natural graphite dispersion in a solvent, followed by supercritical exfoliation and drying. The method exfoliates all graphitic flakes into mostly few-layer graphene flakes. This method is more efficient than traditional mechanical exfoliation techniques and completely avoids the need of multiple sampling/centrifugation cycles. The graphene flakes are generally uniform in both size (area) and thickness and show no clumping or aggregation. After drying, this graphene material has high dispersibility in a suitable solvent; the prepared graphene dispersion is stable for at least three months and shows no indication of settling or separation.Type: ApplicationFiled: May 8, 2023Publication date: October 12, 2023Inventors: Irina Kalinina, Douglas Meyers, Satyabrata Raychaudhuri
-
Patent number: 11608460Abstract: This invention relates to using an imidazolium bromide ionic liquid as an additive to lithium bromide in the absorbent for an absorption chiller. The imidazolium bromide ionic liquid is useful to increase the working region and to lower the risk of crystallization in an absorption chiller. The invention provides an absorption chiller comprising a mixture of a refrigerant and an absorbent, and the absorbent comprises lithium bromide and one or more imidazolium bromide ionic liquids.Type: GrantFiled: January 12, 2021Date of Patent: March 21, 2023Assignee: YAZAKI CORPORATIONInventors: Satyabrata Raychaudhuri, Amirhossein Mehrkesh, George G. Tamas, Stefan Maat, Alberto Coronas Salcedo, Daniel Salavera Muñoz, Juan Prieto Gonzalez
-
Patent number: 11447082Abstract: The disclosed embodiments include an automobile panel that can include a polymer substrate, a network of conductive pathways, and connectors coupled to ends of the network of conductive pathways. The network of conductive pathways can include conductive material disposed in cavities forming a network of channels in the polymer substrate. The conductive material at least partially encapsulates by the polymer substrate. The connectors are connectable to automotive electronic devices thereby forming electrical circuits that include the network of conductive pathways and the automotive electronics.Type: GrantFiled: June 23, 2020Date of Patent: September 20, 2022Assignee: YAZAKI CORPORATIONInventor: Satyabrata Raychaudhuri
-
Publication number: 20220289127Abstract: The disclosed embodiments include an automobile panel that can include a polymer substrate, a network of conductive pathways, and connectors coupled to ends of the network of conductive pathways. The network of conductive pathways can include conductive material disposed in cavities forming a network of channels in the polymer substrate. The conductive material at least partially encapsulates by the polymer substrate. The connectors are connectable to automotive electronic devices thereby forming electrical circuits that include the network of conductive pathways and the automotive electronics.Type: ApplicationFiled: May 27, 2022Publication date: September 15, 2022Inventor: Satyabrata Raychaudhuri
-
Publication number: 20210178470Abstract: This disclosure relates in general to three dimensional (“3D”) printers having a configuration that prepares a three-dimensional object by using a feedstock comprising a metal or a polymer compound and a carbon coating formed on a surface of the compound. This disclosure also relates to such feedstocks and their preparation methods. This disclosure further relates to 3D composite objects prepared by using such printers and feedstocks. This disclosure also relates to carbon containing photocurable formulations and methods for their preparation. This disclosure further relates to electrically conducting 3D polymer composites prepared by using such carbon containing photocurable formulations.Type: ApplicationFiled: February 5, 2021Publication date: June 17, 2021Applicant: Yazaki CorporationInventors: Satyabrata Raychaudhuri, Yongan Yan, Leonid Grigorian
-
Publication number: 20210130669Abstract: This invention relates to using an imidazolium bromide ionic liquid as an additive to lithium bromide in the absorbent for an absorption chiller. The imidazolium bromide ionic liquid is useful to increase the working region and to lower the risk of crystallization in an absorption chiller. The invention provides an absorption chiller comprising a mixture of a refrigerant and an absorbent, and the absorbent comprises lithium bromide and one or more imidazolium bromide ionic liquids.Type: ApplicationFiled: January 12, 2021Publication date: May 6, 2021Inventors: Satyabrata Raychaudhuri, Amirhossein Mehrkesh, George G. Tamas, Stefan Maat, Alberto Coronas Salcedo, Daniel Salavera Muñoz, Juan Prieto Gonzalez
-
Patent number: 10981794Abstract: The present invention is directed to a stable aqueous dispersion of carbon, wherein the carbon comprises between 75-85 wt. % activated carbon, and 15-25 wt. % CNT having a purity of at least 95 wt. %. The dispersion is free of surfactant and is stable for at least two weeks. The aqueous dispersion is useful to make an active layer for an electrode of a supercapacitor. The present invention is also directed to a supercapacitor cell having at least one electrode comprising a current collector and an active layer, wherein the active layer comprises activated carbon and high purity carbon nanotubes and is free of binder. The active layer materials are both porous and conductive in order to increase the charge storage capability and to decrease the electrode resistance. In general, the content of carbon nanotubes in the active layer is between 10 and 30 wt. % and the purity of the carbon nanotubes is at least 95 wt. %.Type: GrantFiled: August 3, 2020Date of Patent: April 20, 2021Assignee: YAZAKI CORPORATIONInventors: Stefan Maat, Satyabrata Raychaudhuri, Sean Imtiaz Brahim, Sanliang Zhang
-
Patent number: 10926326Abstract: This disclosure relates in general to three dimensional (“3D”) printers having a configuration that prepares a three-dimensional object by using a feedstock comprising a metal or a polymer compound and a carbon coating formed on a surface of the compound. This disclosure also relates to such feedstocks and their preparation methods. This disclosure further relates to 3D composite objects prepared by using such printers and feedstocks. This disclosure also relates to carbon containing photocurable formulations and methods for their preparation. This disclosure further relates to electrically conducting 3D polymer composites prepared by using such carbon containing photocurable formulations.Type: GrantFiled: September 27, 2015Date of Patent: February 23, 2021Assignee: Yazaki CorporationInventors: Satyabrata Raychaudhuri, Yongan Yan, Leonid Grigorian
-
Patent number: 10840032Abstract: The present invention is directed to a supercapacitor cell having at least one electrode comprising a current collector and an active layer, wherein the active layer comprises activated carbon and high purity carbon nanotubes and is free of binder. The active layer materials are both porous and conductive in order to increase the charge storage capability and to decrease the electrode resistance. In general, the content of carbon nanotubes in the active layer is between 10 and 30 wt. % and the purity of the carbon nanotubes is at least 95 wt. %.Type: GrantFiled: August 3, 2020Date of Patent: November 17, 2020Assignee: YAZAKI CORPORATIONInventors: Stefan Maat, Satyabrata Raychaudhuri, Sean Imtiaz Brahim, Sanliang Zhang
-
Publication number: 20200324717Abstract: The disclosed embodiments include an automobile panel that can include a polymer substrate, a network of conductive pathways, and connectors coupled to ends of the network of conductive pathways. The network of conductive pathways can include conductive material disposed in cavities forming a network of channels in the polymer substrate. The conductive material at least partially encapsulates by the polymer substrate. The connectors are connectable to automotive electronic devices thereby forming electrical circuits that include the network of conductive pathways and the automotive electronics.Type: ApplicationFiled: June 23, 2020Publication date: October 15, 2020Inventor: Satyabrata Raychaudhuri
-
Patent number: 10312503Abstract: Cohesive carbon assemblies are prepared by obtaining a carbon starting material in the form of powder, particles, flakes, or loose agglomerates, dispersing the carbon in a selected organic solvent by mechanical mixing and/or sonication, and substantially removing the organic solvent, typically by evaporation, whereby the cohesive assembly of carbon is formed. The method is suitable for preparing free-standing, monolithic assemblies of carbon nanotubes in the form of films, wafers, or discs, having high carbon packing density and low electrical resistivity. The method is suitable for preparing adherent cohesive carbon assemblies on substrates comprising various materials. The assemblies have various potential applications, such as electrodes or current collectors in electrochemical capacitors, fuel cells, and batteries, or as electromagnetic interference shielding materials.Type: GrantFiled: February 28, 2017Date of Patent: June 4, 2019Assignee: YAZAKI CORPORATIONInventors: Satyabrata Raychaudhuri, Yongan Yan, Leonid Grigorian
-
Publication number: 20180186644Abstract: Highly purified carbon nanotubes (CNT) having virtually no carbonaceous impurities (amorphous carbon) nor inorganic impurities (metal and metal oxides), and methods of their preparation are described. The purified CNT feature excellent electrical, mechanical, and thermal properties due to the near total absence of detrimental impurities. The CNT starting material is preferably in the form of wafer, film, or buckypaper for efficient diffusion of purifying media. The highly pure CNT are prepared by heat treating a CNT starting material in a specified amount of oxygen, then treating the CNT in a solution comprising water and acid, or further heat treating the CNT in an atmosphere comprising chlorine (Cl2). Extremely low levels of inorganic impurities may be achieved by treating sequentially with a treatment solution followed by chlorine. Removal of chloride from purified CNT may be achieved by further treating the chlorine-treated material in an atmosphere comprising hydrogen (H2).Type: ApplicationFiled: February 20, 2018Publication date: July 5, 2018Inventors: Yongan YAN, Satyabrata RAYCHAUDHURI
-
Patent number: 9926200Abstract: Highly purified carbon nanotubes (CNT) having virtually no carbonaceous impurities (amorphous carbon) nor inorganic impurities (metal and metal oxides), and methods of their preparation are described. The purified CNT feature excellent electrical, mechanical, and thermal properties due to the near total absence of detrimental impurities. The CNT starting material is preferably in the form of wafer, film, or buckypaper for efficient diffusion of purifying media. The highly pure CNT are prepared by heat treating a CNT starting material in a specified amount of oxygen, then treating the CNT in a solution comprising water and acid, or further heat treating the CNT in an atmosphere comprising chlorine (Cl2). Extremely low levels of inorganic impurities may be achieved by treating sequentially with a treatment solution followed by chlorine. Removal of chloride from purified CNT may be achieved by further treating the chlorine-treated material in an atmosphere comprising hydrogen (H2).Type: GrantFiled: March 19, 2015Date of Patent: March 27, 2018Assignee: YAZAKI CORPORATIONInventors: Yongan Yan, Satyabrata Raychaudhuri
-
Publication number: 20170194629Abstract: Cohesive carbon assemblies are prepared by obtaining a carbon starting material in the form of powder, particles, flakes, or loose agglomerates, dispersing the carbon in a selected organic solvent by mechanical mixing and/or sonication, and substantially removing the organic solvent, typically by evaporation, whereby the cohesive assembly of carbon is formed. The method is suitable for preparing free-standing, monolithic assemblies of carbon nanotubes in the form of films, wafers, or discs, having high carbon packing density and low electrical resistivity. The method is suitable for preparing adherent cohesive carbon assemblies on substrates comprising various materials. The assemblies have various potential applications, such as electrodes or current collectors in electrochemical capacitors, fuel cells, and batteries, or as electromagnetic interference shielding materials.Type: ApplicationFiled: February 28, 2017Publication date: July 6, 2017Inventors: Satyabrata RAYCHAUDHURI, Yongan YAN, Leonid GRIGORIAN
-
Patent number: 9617158Abstract: Cohesive carbon assemblies are prepared by obtaining a carbon starting material in the form of powder, particles, flakes, or loose agglomerates, dispersing the carbon in a selected organic solvent by mechanical mixing and/or sonication, and substantially removing the organic solvent, typically by evaporation, whereby the cohesive assembly of carbon is formed. The method is suitable for preparing free-standing, monolithic assemblies of carbon nanotubes in the form of films, wafers, or discs, having high carbon packing density and low electrical resistivity. The method is suitable for preparing adherent cohesive carbon assemblies on substrates comprising various materials. The assemblies have various potential applications, such as electrodes or current collectors in electrochemical capacitors, fuel cells, and batteries, or as electromagnetic interference shielding materials.Type: GrantFiled: December 13, 2013Date of Patent: April 11, 2017Assignee: YAZAKI CORPORATIONInventors: Satyabrata Raychaudhuri, Yongan Yan, Leonid Grigorian
-
Patent number: 8927055Abstract: Coating compositions, and methods for depositing them on the surface of an article to produce an antireflection coating, are disclosed. In one embodiment, the coating composition includes a (meth)acrylate-functional silicon alkoxide, silica particles, a (meth)acrylate monomer, an epoxy (meth)acrylate oligomer, a photoinitiator, a solvent, an acid, and water. The relative amounts of these constituents are controlled such that, when the coating composition is deposited onto the surface of an article and cured, it has a refractive index less than about 1.60 at a wavelength of 510 nm. In another embodiment, the coating composition includes an organo-metallic compound other than an organo-metallic compound of silicon, an epoxy-functional silicon alkoxide, a non-epoxy-functional silicon alkoxide, a curing agent compatible with epoxy-functional molecules, a solvent, an inorganic acid, and water.Type: GrantFiled: June 19, 2009Date of Patent: January 6, 2015Assignee: Yazaki CorporationInventors: Yongan Yan, Satyabrata Raychaudhuri, Matthew Emilio Coda
-
Patent number: 8865786Abstract: Coating compositions, and methods for depositing them on the surface of an article to produce an antireflection coating, are disclosed. In one embodiment, the coating composition includes a (meth)acrylate-functional silicon alkoxide, silica particles, a (meth)acrylate monomer, an epoxy (meth)acrylate oligomer, a photoinitiator, a solvent, an acid, and water. The relative amounts of these constituents are controlled such that, when the coating composition is deposited onto the surface of an article and cured, it has a refractive index less than about 1.60 at a wavelength of 510 nm. In another embodiment, the coating composition includes an organo-metallic compound other than an organo-metallic compound of silicon, an epoxy-functional silicon alkoxide, a non-epoxy-functional silicon alkoxide, a curing agent compatible with epoxy-functional molecules, a solvent, an inorganic acid, and water.Type: GrantFiled: June 19, 2009Date of Patent: October 21, 2014Assignee: Yazaki CorporationInventors: Yongan Yan, Satyabrata Raychaudhuri, Matthew Emilio Coda
-
Publication number: 20140106257Abstract: Cohesive carbon assemblies are prepared by obtaining a carbon starting material in the form of powder, particles, flakes, or loose agglomerates, dispersing the carbon in a selected organic solvent by mechanical mixing and/or sonication, and substantially removing the organic solvent, typically by evaporation, whereby the cohesive assembly of carbon is formed. The method is suitable for preparing free-standing, monolithic assemblies of carbon nanotubes in the form of films, wafers, or discs, having high carbon packing density and low electrical resistivity. The method is suitable for preparing adherent cohesive carbon assemblies on substrates comprising various materials. The assemblies have various potential applications, such as electrodes or current collectors in electrochemical capacitors, fuel cells, and batteries, or as electromagnetic interference shielding materials.Type: ApplicationFiled: December 13, 2013Publication date: April 17, 2014Applicant: YAZAKI CORPORATIONInventors: Satyabrata RAYCHAUDHURI, Yongan YAN, Leonid GRIGORIAN
-
Patent number: 8358467Abstract: An article comprising a substrate and an anti-reflection coating, and methods for depositing the coating, are disclosed. The coating comprises (a) a first coating layer having a high refractive index deposited on the substrate; (b) an epoxide-silica coating layer deposited onto the high refractive index coating layer, comprising an inorganic silica component and an organic organo-silicate component, and (c) a silica coating layer consisting essentially of silica, deposited directly onto the epoxide-silica coating layer. The anti-reflection coating optionally comprises a stack of coating layers, between the first high refractive index coating layer and the epoxide-silica coating layer, having alternating a low refractive index and a high refractive index. Individual coating layer compositions, refractive indexes, and thicknesses are carefully controlled such that reflectance is minimized through destructive interference in the visible light wavelength range of 400 to 700 nm.Type: GrantFiled: September 28, 2011Date of Patent: January 22, 2013Assignee: Yazaki CorporationInventors: Yongan Yan, Anand Kaygee, Satyabrata Raychaudhuri