Patents by Inventor Satyadev Nagaraja

Satyadev Nagaraja has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10134926
    Abstract: A time-of-flight detector includes a semiconductor layer and a light modulation structure. The semiconductor layer is configured to translate light radiation into electrical charge. The light modulation structure is configured to increase a path of interaction of light radiation through the semiconductor layer. In some example implementations, the light modulation structure is configured to deflect at least some light radiation at an increased angle through the semiconductor layer. In some example implementations, the light modulation structure is configured to reflect light radiation more than once through the semiconductor layer.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: November 20, 2018
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Onur Can Akkaya, Satyadev Nagaraja, Tamer Elkhatib, Cyrus Bamji, Swati Mehta
  • Publication number: 20160225922
    Abstract: A time-of-flight detector includes a semiconductor layer and a light modulation structure. The semiconductor layer is configured to translate light radiation into electrical charge. The light modulation structure is configured to increase a path of interaction of light radiation through the semiconductor layer. In some example implementations, the light modulation structure is configured to deflect at least some light radiation at an increased angle through the semiconductor layer. In some example implementations, the light modulation structure is configured to reflect light radiation more than once through the semiconductor layer.
    Type: Application
    Filed: June 30, 2015
    Publication date: August 4, 2016
    Inventors: Onur Can Akkaya, Satyadev Nagaraja, Tamer Elkhatib, Cyrus Bamji, Swati Mehta
  • Patent number: 9312293
    Abstract: Image sensors may include a plurality of photodiodes. The photodiodes may be isolated from each other using isolations regions formed from p-well or n-well implants. Deep and narrow isolation regions may be formed using a multi-step process that selectively places implants at desired depths in a substrate. If desired, the multi-step process may include only one photolithographic patterning step, which in turn can help reduce costs, fabrication time, and alignment errors. The process may include passing ions through a stack of alternating layers of material such as alternating layers of oxide and nitride. After each implant, a layer in the stack may be removed and ions may be passed through the layers remaining in the stack to form an implant at a different depth in the substrate.
    Type: Grant
    Filed: August 27, 2014
    Date of Patent: April 12, 2016
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Satyadev Nagaraja, Rayner Barboza, Giovanni Margutti
  • Patent number: 9105542
    Abstract: This is generally directed to a switchable impedance to ground. In particular, a pixel array can be coupled to and surrounded by a ground ring. The ground ring can be coupled to a switchable impedance to ground. During a correlated double sampling (“CDS”) phase of the pixel array, the switchable impedance can be set to a high resistance value. For example, the switchable impedance can be set to 500 ohms. During an analog-to-digital conversion (“ADC”) readout phase of the pixel array, however, the switchable impedance can be set to a low resistance value. For example, the switchable impedance can be set to 1-10 ohms. Setting the switchable impedance to the high impedance value during the CDS phase can prevent imaging errors such as black hole artifacts. Setting the switchable impedance to the low impedance value during the ADC readout phase can, for example, prevent errors due to ground drift.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: August 11, 2015
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: John Ladd, Satyadev Nagaraja
  • Patent number: 9029972
    Abstract: An imaging system may include an image sensor having an array of image pixels formed in a substrate. Each image pixel may include a photodiode directly coupled to an anti-blooming diode. The anti-blooming diode may be connected to a positive voltage supply line and may be configured to drain excess charge from the photodiode when the photodiode is saturated. The anti-blooming drain may be formed from an n-type diffusion region partially surrounded by a p-type doped layer. The p-type doped layer may be interposed between and in contact with the n-type diffusion region of the anti-blooming diode and an n-type doped region of the photodiode. The anti-blooming diode may begin to drain excess charge from the photodiode in response to the photodiode reaching a threshold potential during integration. If desired, multiple pixels may share a common anti-blooming diode.
    Type: Grant
    Filed: September 23, 2013
    Date of Patent: May 12, 2015
    Assignee: Semiconductor Components Industries, LLC
    Inventor: Satyadev Nagaraja
  • Publication number: 20150064836
    Abstract: Image sensors may include a plurality of photodiodes. The photodiodes may be isolated from each other using isolations regions formed from p-well or n-well implants. Deep and narrow isolation regions may be formed using a multi-step process that selectively places implants at desired depths in a substrate. If desired, the multi-step process may include only one photolithographic patterning step, which in turn can help reduce costs, fabrication time, and alignment errors. The process may include passing ions through a stack of alternating layers of material such as alternating layers of oxide and nitride. After each implant, a layer in the stack may be removed and ions may be passed through the layers remaining in the stack to form an implant at a different depth in the substrate.
    Type: Application
    Filed: August 27, 2014
    Publication date: March 5, 2015
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Satyadev Nagaraja, Rayner Barboza, Giovanni Margutti
  • Publication number: 20140084409
    Abstract: An imaging system may include an image sensor having an array of image pixels formed in a substrate. Each image pixel may include a photodiode directly coupled to an anti-blooming diode. The anti-blooming diode may be connected to a positive voltage supply line and may be configured to drain excess charge from the photodiode when the photodiode is saturated. The anti-blooming drain may be formed from an n-type diffusion region partially surrounded by a p-type doped layer. The p-type doped layer may be interposed between and in contact with the n-type diffusion region of the anti-blooming diode and an n-type doped region of the photodiode. The anti-blooming diode may begin to drain excess charge from the photodiode in response to the photodiode reaching a threshold potential during integration. If desired, multiple pixels may share a common anti-blooming diode.
    Type: Application
    Filed: September 23, 2013
    Publication date: March 27, 2014
    Applicant: Aptina Imaging Corporation
    Inventor: Satyadev Nagaraja
  • Patent number: 8409909
    Abstract: Image sensors have photodiodes separated by isolations regions formed from p-well or n-well implants. Isolation regions may be formed that are narrow and deep. Isolation regions may be formed in a multi-step process that selectively places implants at desired depths in a substrate. Complementary photoresist patterns may be used. To form an implant near the surface of a substrate, a photoresist pattern with openings over the desired implant area may be used. Subsequent implantation may use a complementary pattern such that ions pass through photoresist before implanting in desired regions of a substrate.
    Type: Grant
    Filed: July 6, 2010
    Date of Patent: April 2, 2013
    Assignee: Aptina Imaging Corporation
    Inventor: Satyadev Nagaraja
  • Patent number: 8232132
    Abstract: An image sensor pixel includes a photo-sensor region, a microlens, a first color filter layer, and a second color filter layer. The photo-sensor region is disposed within a semiconductor die. The microlens is disposed on the semiconductor die in optical alignment with the photo-sensor region. The first color filter layer is disposed between the photo-sensor region and the microlens. The second color filter layer is disposed on an opposite side of the microlens as the first color filter layer.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: July 31, 2012
    Assignee: OmniVision Technologies, Inc.
    Inventors: Satyadev Nagaraja, Vincent Venezia
  • Publication number: 20120092532
    Abstract: This is generally directed to a switchable impedance to ground. In particular, a pixel array can be coupled to and surrounded by a ground ring. The ground ring can be coupled to a switchable impedance to ground. During a correlated double sampling (“CDS”) phase of the pixel array, the switchable impedance can be set to a high resistance value. For example, the switchable impedance can be set to 500 ohms. During an analog-to-digital conversion (“ADC”) readout phase of the pixel array, however, the switchable impedance can be set to a low resistance value. For example, the switchable impedance can be set to 1-10 ohms. Setting the switchable impedance to the high impedance value during the CDS phase can prevent imaging errors such as black hole artifacts. Setting the switchable impedance to the low impedance value during the ADC readout phase can, for example, prevent errors due to ground drift.
    Type: Application
    Filed: October 19, 2010
    Publication date: April 19, 2012
    Applicant: Aptina Imaging Corporation
    Inventors: John Ladd, Satyadev Nagaraja
  • Publication number: 20120009723
    Abstract: Image sensors have photodiodes separated by isolations regions formed from p-well or n-well implants. Isolation regions may be formed that are narrow and deep. Isolation regions may be formed in a multi-step process that selectively places implants at desired depths in a substrate. Complementary photoresist patterns may be used. To form an implant near the surface of a substrate, a photoresist pattern with openings over the desired implant area may be used. Subsequent implantation may use a complementary pattern such that ions pass through photoresist before implanting in desired regions of a substrate.
    Type: Application
    Filed: July 6, 2010
    Publication date: January 12, 2012
    Inventor: Satyadev Nagaraja
  • Publication number: 20110217807
    Abstract: An image sensor pixel includes a photo-sensor region, a microlens, a first color filter layer, and a second color filter layer. The photo-sensor region is disposed within a semiconductor die. The microlens is disposed on the semiconductor die in optical alignment with the photo-sensor region. The first color filter layer is disposed between the photo-sensor region and the microlens. The second color filter layer is disposed on an opposite side of the microlens as the first color filter layer.
    Type: Application
    Filed: May 18, 2011
    Publication date: September 8, 2011
    Applicant: OMNIVISION TECHNOLOGIES, INC.
    Inventors: Satyadev Nagaraja, Vincent Venezia
  • Patent number: 7968923
    Abstract: An image sensor pixel includes a photo-sensor region, a microlens, a first color filter layer, and a second color filter layer. The photo-sensor region is disposed within a semiconductor die. The microlens is disposed on the semiconductor die in optical alignment with the photo-sensor region. The first color filter layer is disposed between the photo-sensor region and the microlens. The second color filter layer is disposed on an opposite side of the microlens as the first color filter layer.
    Type: Grant
    Filed: March 12, 2008
    Date of Patent: June 28, 2011
    Assignee: OmniVision Technologies, Inc.
    Inventors: Satyadev Nagaraja, Vincent Venezia
  • Patent number: 7692134
    Abstract: A light sensor cell includes a photosensitive element, a floating diffusion region, and a gate oxide disposed between the photosensitive element and the floating diffusion region. The gate oxide has a non-uniform thickness, with a greater thickness near the photosensitive element and a lesser thickness near the floating diffusion region. A transfer gate is disposed on the gate oxide. The transfer gate has a non-uniform threshold voltage, with a greater threshold voltage near the photosensitive element and a lesser threshold voltage near the floating diffusion region.
    Type: Grant
    Filed: March 24, 2008
    Date of Patent: April 6, 2010
    Assignee: OmniVision Technologies, Inc.
    Inventors: Satyadev Nagaraja, Hidetoshi Nozaki
  • Publication number: 20090236498
    Abstract: A light sensor cell includes a photosensitive element, a floating diffusion region, and a gate oxide disposed between the photosensitive element and the floating diffusion region. The gate oxide has a non-uniform thickness, with a greater thickness near the photosensitive element and a lesser thickness near the floating diffusion region. A transfer gate is disposed on the gate oxide. The transfer gate has a non-uniform threshold voltage, with a greater threshold voltage near the photosensitive element and a lesser threshold voltage near the floating diffusion region.
    Type: Application
    Filed: March 24, 2008
    Publication date: September 24, 2009
    Applicant: OMNIVISION TECHNOLOGIES, INC.
    Inventors: Satyadev Nagaraja, Hidetoshi Nozaki
  • Publication number: 20090230394
    Abstract: An image sensor pixel includes a photo-sensor region, a microlens, a first color filter layer, and a second color filter layer. The photo-sensor region is disposed within a semiconductor die. The microlens is disposed on the semiconductor die in optical alignment with the photo-sensor region. The first color filter layer is disposed between the photo-sensor region and the microlens. The second color filter layer is disposed on an opposite side of the microlens as the first color filter layer.
    Type: Application
    Filed: March 12, 2008
    Publication date: September 17, 2009
    Applicant: OMNIVISION TECHNOLOGIES, INC.
    Inventors: Satyadev Nagaraja, Vincent Venezia
  • Publication number: 20080035940
    Abstract: A pixel includes a photodiode and a transfer transistor. The transfer transistor is formed between the photodiode and a floating node and selectively operative to transfer a signal from the photodiode to the floating node. The transfer transistor has a bird's beak structure formed at the interface of its transfer gate and said floating node. Also included is a reset transistor for resetting the floating node to a voltage reference and an amplification transistor controlled by the floating node.
    Type: Application
    Filed: October 12, 2007
    Publication date: February 14, 2008
    Inventor: Satyadev Nagaraja
  • Publication number: 20070052035
    Abstract: An image sensor in which the metal interconnects are coated with an anti-reflective coating is disclosed. The top, bottom and sides of the metal interconnects may be coated to reduce reflection from all directions. The thickness of the coating is chosen to suppress reflection of light of certain wavelengths incident at certain expected angles. In particular, the thickness of the coating may be chosen to reduce reflections from neighboring pixels. The metal may be coated in multiple layers of anti-reflective coating to suppress multiple wavelengths of light or multiple angles of incidence.
    Type: Application
    Filed: August 23, 2005
    Publication date: March 8, 2007
    Applicant: OmniVision Technologies, Inc.
    Inventors: Satyadev Nagaraja, Howard Rhodes
  • Publication number: 20070018264
    Abstract: An image sensor that has a pixel array using an isolation structure between pixels that reduce electrical cross-talk is disclosed. The pixel array is formed on a substrate that has a thin (less than 5 microns) epitaxial layer. The isolation structure uses a deep p-well to surround a shallow trench isolation. The deep p-well is formed using an implant energy of typically over 700 keV.
    Type: Application
    Filed: August 24, 2005
    Publication date: January 25, 2007
    Applicant: OmniVision Technologies, Inc.
    Inventors: Howard Rhodes, Hidetoshi Nozaki, Sohei Manabe, Hsin-chih Tai, Satyadev Nagaraja, Ashish Shah, William Qian, Hongli Yang, Tiejun Dai
  • Publication number: 20060240601
    Abstract: A pixel includes a photodiode and a transfer transistor. The transfer transistor is formed between the photodiode and a floating node and selectively operative to transfer a signal from the photodiode to the floating node. The transfer transistor has a bird's beak structure formed at the interface of its transfer gate and said floating node. Also included is a reset transistor for resetting the floating node to a voltage reference and an amplification transistor controlled by the floating node.
    Type: Application
    Filed: April 22, 2005
    Publication date: October 26, 2006
    Applicant: OmniVision Technologies, Inc.
    Inventor: Satyadev Nagaraja