Patents by Inventor Satyadev R. Patel

Satyadev R. Patel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6800210
    Abstract: An etching method, such as for forming a micromechanical device, is disclosed. One embodiment of the method is for releasing a micromechanical structure, comprising, providing a substrate; providing a sacrificial layer directly or indirectly on the substrate; providing one or more micromechanical structural layers on the sacrificial layer; performing a first etch to remove a portion of the sacrificial layer, the first etch comprising providing an etchant gas and energizing the etchant gas so as to allow the etchant gas to physically, or chemically and physically, remove the portion of the sacrificial layer; performing a second etch to remove additional sacrificial material in the sacrificial layer, the second etch comprising providing a gas that chemically but not physically etches the additional sacrificial material.
    Type: Grant
    Filed: May 22, 2002
    Date of Patent: October 5, 2004
    Assignee: Reflectivity, Inc.
    Inventors: Satyadev R. Patel, Andrew G. Huibers, Gregory P. Schaadt, Peter J. Heureux
  • Publication number: 20040191937
    Abstract: A method for processing microelectromechanical devices is disclosed herein. The method prevents the diffusion and interaction between sacrificial layers and structure layers of the microelectromechanical devices by providing selected barrier layers between consecutive sacrificial and structure layers.
    Type: Application
    Filed: March 28, 2003
    Publication date: September 30, 2004
    Inventors: Satyadev R. Patel, Jonathan C. Doan
  • Publication number: 20040191946
    Abstract: A sacrificial layer and a method for applying said sacrificial layer in fabricating microelectromechanical devices are disclosed herein. The sacrificial layer comprises an early transition metal. Specifically, the sacrificial layer comprises an early transition metal element, an early transition metal alloy or an early transition metal silicide.
    Type: Application
    Filed: March 28, 2003
    Publication date: September 30, 2004
    Inventors: Satyadev R. Patel, Jonathan C. Doan
  • Publication number: 20040156089
    Abstract: A method and spatial light modulator are provided herein. The spatial light modulator has a higher resolution and an increased fill factor. The spatial light modulator also provides an increased contrast ratio. Furthermore, the spatial light modulator of the present invention can be operated in the absence of polarized light and that has improved electro-mechanical performance and robustness with respect to manufacturing. A method and its alternative are disclosed herein by the present invention for manufacturing the spatial light modulator.
    Type: Application
    Filed: February 12, 2003
    Publication date: August 12, 2004
    Inventors: Jonathan C. Doan, Satyadev R. Patel, Robert M. Duboc
  • Publication number: 20040156090
    Abstract: A micro-mirror that comprises a substrate, a hinge structure formed on the substrate and a mirror plate attached to the hinge structure is provided for use in display systems. The mirror plate is capable of rotating from a non-deflected resting state to a state that is at least 14°, and preferably from 15° to 27° from the non-deflected resting state. In operation, the micro-mirror switches between an “ON”-state and “OFF”-state, which are defined in accordance with a rotational position of the mirror plate. The OFF state can be a non-deflected position of the micro-mirror (generally parallel to the substrate), the same angle (though opposite direction) as the ON state, or an angle less than the ON state (though in the opposite direction). Reflected light from the “ON” and “OFF” states are thus separated and the contrast ratio is improved.
    Type: Application
    Filed: February 12, 2003
    Publication date: August 12, 2004
    Inventors: Satyadev R. Patel, Andrew G. Huibers, Peter J. Heureux
  • Publication number: 20040125347
    Abstract: A spatial light modulator is disclosed, along with methods for making such a modulator, that comprises an array of micromirrors each having a hinge and a micromirror plate held via the hinge on a substrate, the micromirror plate being disposed in a plane separate from the hinge and having a diagonal extending across the micromirror plate, the micromirror plate being attached to the hinge such that the micromirror plate can rotate along a rotation axis that is parallel to, but off-set from the diagonal of the micromirror plate. Also disclosed is a projection system that comprises such a spatial light modulator, as well as a light source, condensing optics, wherein light from the light source is focused onto the array of micromirrors, projection optics for projecting light selectively reflected from the array of micromirrors onto a target, and a controller for selectively actuating the micromirrors in the array.
    Type: Application
    Filed: February 12, 2003
    Publication date: July 1, 2004
    Inventors: Satyadev R. Patel, Andrew G. Huibers
  • Publication number: 20040100677
    Abstract: A projection system, a spatial light modulator, and a method for forming a micromirror array such as for a projection display are disclosed. The spatial light modulator can have two substrates bonded together with one of the substrates comprising a micro-mirror array. The two substrates can be bonded at the wafer level after depositing a getter material and/or solid or liquid lubricant on one or both of the wafers if desired. In one embodiment of the invention, one of the substrates is a light transmissive substrate and a light absorbing layer is provided on the light transmissive substrate to selectively block light from passing through the substrate. The light absorbing layer can form a pattern, such as a frame around an array of micro-mirrors.
    Type: Application
    Filed: November 26, 2002
    Publication date: May 27, 2004
    Applicant: REFLECTIVITY, INC., a California corporation
    Inventors: Andrew G. Huibers, Satyadev R. Patel
  • Publication number: 20040100680
    Abstract: A projection system, a spatial light modulator, and a method for forming micromirrors are disclosed. A substrate comprises circuitry and electrodes for electrostatically deflecting micromirror elements that are disposed within an array of such elements forming the spatial light modulator. In one embodiment, the substrate is a silicon substrate having circuitry and electrodes thereon for electrostatically actuating adjacent micromirror elements, and the substrate is fully or selectively covered with a light absorbing material.
    Type: Application
    Filed: November 26, 2002
    Publication date: May 27, 2004
    Applicant: REFLECTIVITY, INC., California corporation
    Inventors: Andrew G. Huibers, Satyadev R. Patel, Robert M. Duboc
  • Patent number: 6741383
    Abstract: A spatial light modulator having a micromirror and one or more deflection limiting mechanisms, and a process for fabrication therefor. In one embodiment, the mirror support structure has a deflection stopping mechanism that limits the tilt angle of the reflective plate. Alternatively, a deflection stopping mechanism can be provided separate from the mirror support structure. The deflection stopping mechanism can be used in conjunction with one or more additional stopping mechanisms such as the abutment of a portion of the reflective plate against the substrate upon which it was constructed and/or abutment of the micromirror on a surface or structure of the circuit substrate.
    Type: Grant
    Filed: May 24, 2002
    Date of Patent: May 25, 2004
    Assignee: Reflectivity, Inc.
    Inventors: Andrew G. Huibers, Peter J. Heureux, Satyadev R. Patel
  • Publication number: 20040069747
    Abstract: Processes for the removal of a layer or region from a workpiece material by contact with a process gas in the manufacture of a microstructure are enhanced by the ability to accurately determine the endpoint of the removal step. A vapor phase etchant is used to remove a material that has been deposited on a substrate, with or without other deposited structure thereon. By creating an impedance at the exit of an etching chamber (or downstream thereof), as the vapor phase etchant passes from the etching chamber, a gaseous product of the etching reaction is monitored, and the endpoint of the removal process can be determined.
    Type: Application
    Filed: October 11, 2002
    Publication date: April 15, 2004
    Applicant: REFLECTIVITY, INC., a California corporation
    Inventors: Satyadev R. Patel, Gregory P. Schaadt, Douglas B. MacDonald, Niles K. MacDonald, Hongqin Shi
  • Publication number: 20040035821
    Abstract: A method for making a spatial light modulator is disclosed, that comprises forming an array of micromirrors each having a hinge and a micromirror plate held via the hinge on a substrate, the micromirror plate being disposed in a plane separate from the hinge and having a hinge made of a transition metal nitride, followed by releasing the micromirrors in a spontaneous gas phase chemical etchant. Also disclosed is a projection system that comprises such a spatial light modulator, as well as a light source, condensing optics, wherein light from the light source is focused onto the array of micromirrors, projection optics for projecting light selectively reflected from the array of micromirrors onto a target, and a controller for selectively actuating the micromirrors in the array.
    Type: Application
    Filed: March 28, 2003
    Publication date: February 26, 2004
    Inventors: Jonathan C. Doan, Satyadev R. Patel, Andrew G. Huibers, Jason S. Reid
  • Publication number: 20040008402
    Abstract: A micromirror device is disclosed, along with a method of making such a micromirror device that comprises a mirror plate, a hinge and an extension plate. The extension plate is formed on the mirror plate and between the mirror plate and the electrode associated with the mirror plate for rotating the mirror plate. The extension plate can be metallic or dielectric. Also disclosed is a method of making such a micromirror device. In particular, the extension plate is formed after the formation of the mirror plate. Moreover, also disclosed is a projection system that comprises a spatial light modulator having an array of such micromirrors, as well as a light source, condensing optics, wherein light from the light source is focused onto the array of micromirrors, projection optics for projecting light selectively reflected from the array of micromirrors onto a target, and a controller for selectively actuating the micromirrors in the array.
    Type: Application
    Filed: July 3, 2003
    Publication date: January 15, 2004
    Inventors: Satyadev R. Patel, Andrew G. Huibers
  • Publication number: 20030054588
    Abstract: A method for forming a MEMS device is disclosed, where a final release step is performed just prior to a wafer bonding step to protect the MEMS device from contamination, physical contact, or other deleterious external events. Without additional changes to the MEMS structure between release and wafer bonding and singulation, except for an optional stiction treatment, the MEMS device is best protected and overall process flow is improved. The method is applicable to the production of any MEMS device and is particularly beneficial in the making of fragile micromirrors.
    Type: Application
    Filed: December 3, 2001
    Publication date: March 20, 2003
    Applicant: REFLECTIVITY, INC., a California corporation
    Inventors: Satyadev R. Patel, Andrew G. Huibers, Steven S. Chiang
  • Patent number: 6523961
    Abstract: In order to minimize light diffraction along the direction of switching and more particularly light diffraction into the acceptance cone of the projection optics, in the present invention, mirrors are provided which are not rectangular. Also, in order to minimize the cost of the illumination optics and the size of the display unit of the present invention, the light source is placed orthogonal to the rows (or columns) of the array, and/or the light source is placed orthogonal to a side of the frame defining the active area of the array. The incident light beam, though orthogonal to the sides of the active area, are not however, orthogonal to any substantial portion of sides of the individual mirrors in the array. Orthogonal sides cause incident light to diffract along the direction of mirror switching, and result in light ‘leakage’ into the on-state even if the mirror is in the off-state. This light diffraction decreases the contrast ratio of the mirror.
    Type: Grant
    Filed: December 7, 2000
    Date of Patent: February 25, 2003
    Assignee: Reflectivity, Inc.
    Inventors: Fedor A. Ilkov, Satyadev R. Patel, Peter W. Richards, John K. Stockton
  • Publication number: 20020195423
    Abstract: The etching of a material in a vapor phase etchant is disclosed where a vapor phase etchant is provided to an etching chamber at a total gas pressure of 10 Torr or more, preferably 20 Torr or even 200 Torr or more. The vapor phase etchant can be gaseous acid etchant, a noble gas halide or an interhalogen. The sample/workpiece that is etched can be, for example, a semiconductor device or MEMS device, etc. The material that is etched/removed by the vapor phase etchant is preferably silicon and the vapor phase etchant is preferably provided along with one or more diluents. Another feature of the etching system includes the ability to accurately determine the end point of the etch step, such as by creating an impedance at the exit of the etching chamber (or downstream thereof) so that when the vapor phase etchant passes from the etching chamber, a gaseous product of the etching reaction is monitored, and the end point of the removal process can be determined.
    Type: Application
    Filed: March 22, 2002
    Publication date: December 26, 2002
    Applicant: REFLECTIVITY, INC.
    Inventors: Satyadev R. Patel, Gregory P. Schaadt, Douglas B. MacDonald, Hongqin Shi, Andrew G. Huibers, Peter Heureux
  • Publication number: 20020197761
    Abstract: An etching method, such as for forming a micromechanical device, is disclosed. One embodiment of the method is for releasing a micromechanical structure, comprising, providing a substrate; providing a sacrificial layer directly or indirectly on the substrate; providing one or more micromechanical structural layers on the sacrificial layer; performing a first etch to remove a portion of the sacrificial layer, the first etch comprising providing an etchant gas and energizing the etchant gas so as to allow the etchant gas to physically, or chemically and physically, remove the portion of the sacrificial layer; performing a second etch to remove additional sacrificial material in the sacrificial layer, the second etch comprising providing a gas that chemically but not physically etches the additional sacrificial material.
    Type: Application
    Filed: May 22, 2002
    Publication date: December 26, 2002
    Applicant: REFLECTIVITY, INC.
    Inventors: Satyadev R. Patel, Andrew G. Huibers, Gregory P. Schaadt, Peter J. Heureux
  • Publication number: 20020196524
    Abstract: A spatial light modulator having a micromirror and one or more deflection limiting mechanisms, and a process for fabrication therefor. In one embodiment, the mirror support structure has a deflection stopping mechanism that limits the tilt angle of the reflective plate. Alternatively, a deflection stopping mechanism can be provided separate from the mirror support structure. The deflection stopping mechanism can be used in conjunction with one or more additional stopping mechanisms such as the abutment of a portion of the reflective plate against the substrate upon which it was constructed and/or abutment of the micromirror on a surface or structure of the circuit substrate.
    Type: Application
    Filed: May 24, 2002
    Publication date: December 26, 2002
    Applicant: REFLECTIVITY, INC.
    Inventors: Andrew G. Huibers, Peter J. Heureux, Satyadev R. Patel
  • Publication number: 20020132389
    Abstract: A method is disclosed for forming a micromechanical device. The method includes fully or partially forming one or more micromechanical structures multiple times on a first substrate. A second substrate is bonded onto the first substrate so as to cover the multiple areas each having one or more micromechanical structures, so as to form a substrate assembly. The substrate assembly is then separated into individual dies, each die having the one or more micromechanical structures held on a portion of the first substrate, with a portion of the second substrate bonded to the first substrate portion. Finally, the second substrate portion is removed from each die to expose the one or more micromechanical structures on the first substrate portion.
    Type: Application
    Filed: March 15, 2002
    Publication date: September 19, 2002
    Applicant: REFLECTIVITY, INC., a Delaware corporation
    Inventors: Satyadev R. Patel, Andrew G. Huibers
  • Publication number: 20020121502
    Abstract: The etching of a sacrificial silicon portion in a microstructure such as a microelectromechanical structure by the use of etchant gases that are noble gas fluorides or halogen fluorides is performed with greater selectivity toward the silicon portion relative to other portions of the microstructure by slowing the etch rate. The etch rate is preferably 30 um/hr or less, and can be 3 um/hr or even less. The selectivity is also improved by the addition of non-etchant gaseous additives to the etchant gas. Preferably the non-etchant gaseous additives that have a molar-averaged formula weight that is below that of molecular nitrogen offer significant advantages over gaseous additives of higher formula weights by causing completion of the etch in a shorter period of time while still achieving the same improvement in selectivity. The etch process is also enhanced by the ability to accurately determine the end point of the removal step.
    Type: Application
    Filed: September 17, 2001
    Publication date: September 5, 2002
    Inventors: Satyadev R. Patel, Gregory P. Schaadt, Douglas B. MacDonald, Hongqin Shi
  • Publication number: 20020024641
    Abstract: In order to minimize light diffraction along the direction of switching and more particularly light diffraction into the acceptance cone of the projection optics, in the present invention, mirrors are provided which are not rectangular. Also, in order to minimize the cost of the illumination optics and the size of the display unit of the present invention, the light source is placed orthogonal to the rows (or columns) of the array, and/or the light source is placed orthogonal to a side of the frame defining the active area of the array. The incident light beam, though orthogonal to the sides of the active area, are not however, orthogonal to any substantial portion of sides of the individual mirrors in the array. Orthogonal sides cause incident light to diffract along the direction of mirror switching, and result in light ‘leakage’ into the on-state even if the mirror is in the off-state. This light diffraction decreases the contrast ratio of the mirror.
    Type: Application
    Filed: December 7, 2000
    Publication date: February 28, 2002
    Inventors: Fedor A. Ilkov, Satyadev R. Patel, Peter W. Richards, John K. Stockton