Patents by Inventor Satyanarayan Panigrahi

Satyanarayan Panigrahi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11668022
    Abstract: A method and system for the production of fibers for use in biocomposites is provided that includes the ability to use both retted and unretted straw, that keeps the molecular structure of the fibers intact by subjecting the fibers to minimal stress, that maximizes the fiber's aspect ratio, that maximizes the strength of the fibers, and that minimizes time and energy inputs, along with maintaining the fibers in good condition for bonding to the polymer(s) used with the fibers to form the biocomposite material. This consequently increases the functionality of the biocomposites produced (i.e. reinforcement, sound absorption, light weight, heat capacity, etc.), increasing their marketability. Additionally, as the disclosed method does not damage the fibers, oilseed flax straw, as well as all types of fibrous materials (i.e. fiber flax, banana, jute, industrial hemp, sisal, coir) etc., can be processed in bio composite materials.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: June 6, 2023
    Assignee: CNH INDUSTRIAL CANADA, LTD.
    Inventors: James Henry, Satyanarayan Panigrahi, Radhey Lal Kushwaha
  • Patent number: 11447892
    Abstract: A method and system for the production of fibers for use in biocomposites is provided that includes the ability to use both retted and unretted straw, that keeps the molecular structure of the fibers intact by subjecting the fibers to minimal stress, that maximizes the fiber's aspect ratio, that maximizes the strength of the fibers, and that minimizes time and energy inputs, along with maintaining the fibers in good condition for bonding to the polymer(s) used with the fibers to form the biocomposite material. This consequently increases the functionality of the biocomposites produced (i.e. reinforcement, sound absorption, light weight, heat capacity, etc.), increasing their marketability. Additionally, as the disclosed method does not damage the fibers, oilseed flax straw, as well as all types of fibrous materials (i.e. fiber flax, banana, jute, industrial hemp, sisal, coir) etc., can be processed in bio composite materials.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: September 20, 2022
    Assignee: CNH Industrial Canada, Ltd.
    Inventors: James Henry, Satyanarayan Panigrahi, Radhey Lal Kushwaha
  • Patent number: 10480115
    Abstract: A system and method is provided for drying for fibers or fibrous materials, such as flax, hemp, jute, sisal, banana and coir, among others by dehumidifying the fibers in a temperature and humidity-controlled environment. The dehumidification system does not detrimentally affect the fiber's properties (e.g., strength) by evenly drying the fibers and not subjecting the fibers to repeated high temperature environments, allowing the fibers to be used in more biocomposite applications, such as a reinforcement material. Also the dehumidification method reduces/prevents fiber discoloration, odor, and decomposition.
    Type: Grant
    Filed: March 6, 2015
    Date of Patent: November 19, 2019
    Assignee: CNH Industrial Canada, Ltd.
    Inventors: James Henry, Satyanarayan Panigrahi, Radhey Lal Kushwaha
  • Patent number: 10472767
    Abstract: A method to treat fibrous materials for use in the formation of a biocomposite material that significantly reduces or eliminates the odors emitted from the fibrous materials is provided. In the method, the fibers or fibrous materials are initially treated to extract the raw fiber from the source plant material and the remove unwanted fractions of the fiber, such as the hemicellulose, lignin, and pectin, among others, leaving only the intact cellulose fibers. These cellulose fibers are then further processed in a second step to remove the odor from the cellulose fibers. The second step includes a combination of a second chemical treatment, dehumidification, and/or a cold plasma modification to render the cellulosic fibers odorless.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: November 12, 2019
    Assignee: CNH Industrial Canada, Ltd.
    Inventors: James Henry, Satyanarayan Panigrahi, Radhey Lal Kushwaha
  • Patent number: 10446289
    Abstract: A method to provide enhanced electrical conductivity to the biocomposite material in which fibrous materials are initially combined and mixed with a polymer base. As the fibrous material and polymer are mixed or compounded, molecular bonds form between the fibrous material and the polymer. At this stage of the process the conductive material and/or particles are added to the mixture because the molecular bonds have formed in the biocomposite material, and the conductive particles cannot interfere with the bonding between the fibrous material and the polymer. The conductive particles are encapsulated by the biocomposite material such that the biocomposite mixture is formed with enhanced electrical conductivity properties, while not detrimentally affecting any of the other enhanced properties of the biocomposite material based on the molecular bonding between the fibrous material and the polymer.
    Type: Grant
    Filed: April 2, 2015
    Date of Patent: October 15, 2019
    Assignee: CNH Industrial Canada, Ltd.
    Inventors: James Henry, Satyanarayan Panigrahi, Radhey Lal Kushwaha
  • Patent number: 10273353
    Abstract: A system and method for predicting the formulation and processing method and processing parameters for the formation of a biocomposite material is provided. The system and method utilizes the desired properties for the biocomposite material and utilizes these properties m a prediction system to determine the particular formulation, processing method and processing parameters for the formation of a biocomposite material having the desired characteristics. This information is output from the prediction system to a biocomposite material manufacturing system in order to form the biocomposite material and an end product formed therefrom that has the desired characteristics input into the prediction system.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: April 30, 2019
    Assignee: CNH Industrial Canada, Ltd.
    Inventors: James Henry, Satyanarayan Panigrahi, Radhey Lal Kushwaha
  • Patent number: 10093779
    Abstract: The present invention is directed to plant fiber-reinforced biocomposite thermoplastic and/or resin compositions and a method for reinforcing thermoplastic resins. The present invention provides a use for the cellulose portion of a plant material, which is the portion left over after processing the selected plant materials to separate the cellulose in a mechanical process that does not damage the internal molecular structure of the cellulose fraction, enabling the cellulose fraction to chemically bond with the thermoplastic resin to enhance the reinforcement of the resin or thermoplastic biocomposite composition.
    Type: Grant
    Filed: March 22, 2017
    Date of Patent: October 9, 2018
    Assignee: CNH Industrial Canada, Ltd.
    Inventors: Satyanarayan Panigrahi, Radhey Lal Kushwaha, James Henry
  • Patent number: 10005200
    Abstract: A system or apparatus and associated method is provided to remove pinholes from bio composite materials in order to increase the strength and functionality of the composites. The apparatus and method uses an inert gas, such as nitrogen, that is introduced into the processing chamber where the fiber and the polymer are combined to form the biocomposite material. The inert gas is introduced through an inlet into the chamber and creates a pressure differential between the interior and exterior of the product mixture to force the air and moisture out of the mixture and through an outlet or vent on the chamber, along with the inert gas and any other gases, thereby preventing or at least significantly limiting the formation of pinholes in the biocomposite product.
    Type: Grant
    Filed: March 6, 2015
    Date of Patent: June 26, 2018
    Assignee: CNH Industrial Canada, Ltd.
    Inventors: James Henry, Satyanarayan Panigrahi, Radhey Lal Kushwaha
  • Patent number: 9926442
    Abstract: The present invention is directed to plant fiber-reinforced thermoplastic compositions and a method for reinforcing thermoplastic resins. The present invention provides a use for the cellulose portion of a plant material, which is the portion left over after processing the selected plant materials to separate the hemi-cellulose and lignin from the cellulose.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: March 27, 2018
    Assignee: CNH Industrial Canada, Ltd.
    Inventors: James Henry, Satyanarayan Panigrahi, Radhey Lal Kushwaha
  • Patent number: 9915030
    Abstract: According to one aspect of the present disclosure, a mechanism and method is provided to clean and remove or separate cellulose fibers from the source fibrous material without stressing and/or damaging the cellulose fibers. The mechanism includes an agitator that directs the washing fluid in a vertical direction into engagement with the fibrous material to effect maximum cleaning of the cellulose from the remainder of the fibrous material without damaging or stressing the cellulose, thereby providing cellulose that can enhance the strength and other beneficial characteristics of a biocomposite material formed using the cellulose.
    Type: Grant
    Filed: March 19, 2015
    Date of Patent: March 13, 2018
    Assignee: CNH Industrial Canada, Ltd.
    Inventors: James Henry, Satyanarayan Panigrahi, Radhey Lal Kushwaha
  • Patent number: 9902813
    Abstract: The present invention is directed to plant fiber-reinforced thermoplastic compositions and a method for reinforcing thermoplastic resins. The present invention provides a use for the cellulose portion of a plant material, which is the portion left over after processing the selected plant materials to separate the hemi-cellulose and lignin from the cellulose.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: February 27, 2018
    Assignee: CNH Industrial Canada, Ltd.
    Inventors: James Henry, Satyanarayan Panigrahi, Radhey Lal Kushwaha
  • Publication number: 20180000307
    Abstract: A method and system for the production of fibers for use in biocomposites is provided that includes the ability to use both retted and unretted straw, that keeps the molecular structure of the fibers intact by subjecting the fibers to minimal stress, that maximizes the fiber's aspect ratio, that maximizes the strength of the fibers, and that minimizes time and energy inputs, along with maintaining the fibers in good condition for bonding to the polymer(s) used with the fibers to form the biocomposite material. This consequently increases the functionality of the biocomposites produced (i.e. reinforcement, sound absorption, light weight, heat capacity, etc.), increasing their marketability. Additionally, as the disclosed method does not damage the fibers, oilseed flax straw, as well as all types of fibrous materials (i.e. fiber flax, banana, jute, industrial hemp, sisal, coir) etc., can be processed in bio composite materials.
    Type: Application
    Filed: September 12, 2017
    Publication date: January 4, 2018
    Inventors: James Henry, Satyanarayan Panigrahi, Radhey Lal Kushwaha
  • Publication number: 20180002514
    Abstract: The present invention is directed to plant fiber-reinforced thermoplastic compositions and a method for reinforcing thermoplastic resins. The present invention provides a use for the cellulose portion of a plant material, which is the portion left over after processing the selected plant materials to separate the hemi-cellulose and lignin from the cellulose.
    Type: Application
    Filed: September 12, 2017
    Publication date: January 4, 2018
    Applicant: CNH Industrial Canada, Ltd.
    Inventors: James Henry, Satyanarayan Panigrahi, Radhey Lal Kushwaha
  • Publication number: 20180000308
    Abstract: A method and system for the production of fibers for use in biocomposites is provided that includes the ability to use both retted and unretted straw, that keeps the molecular structure of the fibers intact by subjecting the fibers to minimal stress, that maximizes the fiber's aspect ratio, that maximizes the strength of the fibers, and that minimizes time and energy inputs, along with maintaining the fibers in good condition for bonding to the polymer(s) used with the fibers to form the biocomposite material. This consequently increases the functionality of the biocomposites produced (i.e. reinforcement, sound absorption, light weight, heat capacity, etc.), increasing their marketability. Additionally, as the disclosed method does not damage the fibers, oilseed flax straw, as well as all types of fibrous materials (i.e. fiber flax, banana, jute, industrial hemp, sisal, coir) etc., can be processed in bio composite materials.
    Type: Application
    Filed: September 12, 2017
    Publication date: January 4, 2018
    Inventors: James Henry, Satyanarayan Panigrahi, Radhey Lal Kushwaha
  • Patent number: 9790354
    Abstract: The present invention is directed to plant fiber-reinforced thermoplastic compositions and a method for reinforcing thermoplastic resins. The present invention provides a use for the cellulose portion of a plant material, which is the portion left over after processing the selected plant materials to separate the hemi-cellulose and lignin from the cellulose.
    Type: Grant
    Filed: April 27, 2015
    Date of Patent: October 17, 2017
    Assignee: CNH Industrial Canada, Ltd.
    Inventors: James Henry, Satyanarayan Panigrahi, Radhey Lal Kushwaha
  • Patent number: 9777128
    Abstract: A method and system for the production of fibers for use in biocomposites is provided that includes the ability to use both retted and unretted straw, that keeps the molecular structure of the fibers intact by subjecting the fibers to minimal stress, that maximizes the fiber's aspect ratio, that maximizes the strength of the fibers, and that minimizes time and energy inputs, along with maintaining the fibers in good condition for bonding to the polymer(s) used with the fibers to form the biocomposite material. This consequently increases the functionality of the biocomposites produced (i.e. reinforcement, sound absorption, light weight, heat capacity, etc.), increasing their marketability. Additionally, as the disclosed method does not damage the fibers, oilseed flax straw, as well as all types of fibrous materials (i.e. fiber flax, banana, jute, industrial hemp, sisal, coir) etc., can be processed in bio composite materials.
    Type: Grant
    Filed: February 24, 2015
    Date of Patent: October 3, 2017
    Assignee: CNH Industrial Canada, Ltd.
    Inventors: James Henry, Satyanarayan Panigrahi, Radhey Lal Kushwaha
  • Patent number: 9718944
    Abstract: A method for coloring fibers or fibrous materials where the fibrous material is initially chemically pretreated in order to achieve natural/white color for the fibrous materials. Next the pretreated fibrous material, a polymer base, and the colorant concentrate(s) are combined under suitable conditions to form a biocomposite mixture. The chemical pretreatment of the fibrous material prevents damage from being done to the fibrous material, such that the fibrous material retains its strength enhancing properties when combined with the polymer to form the biocomposite mixture. Additionally, the chemical pretreatment enables the fibrous material to chemically and mechanically bond with the colorant when combined into the biocomposite mixture.
    Type: Grant
    Filed: April 2, 2015
    Date of Patent: August 1, 2017
    Assignee: CNH Industrial Canada, Ltd.
    Inventors: James Henry, Satyanarayan Panigrahi, Radhey Lal Kushwaha
  • Publication number: 20170190853
    Abstract: The present invention is directed to plant fiber-reinforced biocomposite thermoplastic and/or resin compositions and a method for reinforcing thermoplastic resins. The present invention provides a use for the cellulose portion of a plant material, which is the portion left over after processing the selected plant materials to separate the cellulose in a mechanical process that does not damage the internal molecular structure of the cellulose fraction, enabling the cellulose fraction to chemically bond with the thermoplastic resin to enhance the reinforcement of the resin or thermoplastic biocomposite composition.
    Type: Application
    Filed: March 22, 2017
    Publication date: July 6, 2017
    Inventors: Satyanarayan Panigrahi, Radhey Lal Kushwaha, James Henry
  • Patent number: 9663636
    Abstract: The present invention is directed to plant fiber-reinforced biocomposite thermoplastic and/or resin compositions and a method for reinforcing thermoplastic resins. The present invention provides a use for the cellulose portion of a plant material, which is the portion left over after processing the selected plant materials to separate the cellulose in a mechanical process that does not damage the internal molecular structure of the cellulose fraction, enabling the cellulose fraction to chemically bond with the thermoplastic resin to enhance the reinforcement of the resin or thermoplastic biocomposite composition.
    Type: Grant
    Filed: April 28, 2015
    Date of Patent: May 30, 2017
    Assignee: CNH Industrial Canada, Ltd.
    Inventors: Satyanarayan Panigrahi, Radhey Lal Kushwaha, James Henry
  • Patent number: 9650728
    Abstract: The present invention is directed to plant fiber-reinforced biocomposite thermoplastic and/or resin compositions and a method for reinforcing thermoplastic resins. The present invention provides a use for the cellulose portion of a plant material, which is the portion left over after processing the selected plant materials to separate the cellulose in a mechanical process that does not damage the internal molecular structure of the cellulose fraction, enabling the cellulose fraction to chemically bond with the thermoplastic resin to enhance the reinforcement of the resin or thermoplastic biocomposite composition.
    Type: Grant
    Filed: November 22, 2013
    Date of Patent: May 16, 2017
    Assignee: CNH Industrial Canada, Ltd.
    Inventors: Satyanarayan Panigrahi, Radhey Lal Kushwaha, James Henry