Patents by Inventor Saul E. Greenhut

Saul E. Greenhut has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11957482
    Abstract: The control module of a first pacemaker included in an implantable medical device system including the first pacemaker and a second pacemaker is configured to set a pacing escape interval in response to a far field pacing pulse sensed by the first pacemaker. The far field pacing pulse is a pacing pulse delivered by the second pacemaker. The pacing escape interval is allowed to continue without restarting the in response to a far field intrinsic event sensed by the first pacemaker during the pacing escape interval. The first pacemaker delivers a cardiac pacing pulse to the heart upon expiration of the pacing escape interval.
    Type: Grant
    Filed: July 18, 2022
    Date of Patent: April 16, 2024
    Assignee: Medtronic, Inc.
    Inventors: Wade M. Demmer, Todd J. Sheldon, Saul E. Greenhut, James D. Reinke
  • Patent number: 11950906
    Abstract: This disclosure is related to devices, systems, and techniques for performing patient parameter measurements. In some examples, a medical device system includes an optical sensor configured to measure ambient light and a tissue oxygen saturation parameter and processing circuitry configured to determine that a current measurement of the tissue oxygen saturation parameter is prompted and control the optical sensor to perform an ambient light measurement associated with the current measurement of the tissue oxygen saturation parameter.
    Type: Grant
    Filed: February 1, 2022
    Date of Patent: April 9, 2024
    Assignee: Medtronic, Inc.
    Inventors: Jonathan L. Kuhn, Can Cinbis, Saul E. Greenhut
  • Patent number: 11931589
    Abstract: Systems, devices, and techniques for establishing communication between two medical devices are described. In one example, an implantable medical device comprises communication circuitry, therapy delivery circuitry, and processing circuitry configured to initiate a communication window during which the implantable second medical device is capable of receiving the information related to a cardiac event detected by a first medical device, the communication window being one of a plurality of communication windows defined by a communication schedule that corresponds to a transmission schedule in which the first medical device is configured to transmit the information, control the communication circuitry to receive, from the first medical device, the information related to the cardiac event that is indicative of a timing of the cardiac event with respect to a timing of the communication window, schedule and control delivery of a therapy according to the information related to the cardiac event.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: March 19, 2024
    Assignee: Medtronic, Inc.
    Inventors: James K. Carney, Saul E. Greenhut, Jonathan L. Kuhn, James D. Reinke, David J. Peichel, James W. Busacker
  • Patent number: 11931585
    Abstract: A medical device is configured to detect an alternating pattern of signal features determined from consecutive segments of a cardiac electrical signal and determine a gross morphology metric from at least one segment of the cardiac electrical signal. The device is configured to detect cardiac event oversensing in response to detecting the alternating pattern and the gross morphology metric not meeting tachyarrhythmia morphology criteria. The medical device may withhold detecting an arrhythmia in response to detecting the cardiac event oversensing.
    Type: Grant
    Filed: December 2, 2020
    Date of Patent: March 19, 2024
    Assignee: Medtronic, Inc.
    Inventors: Gavin M. Mischler, Yuanzhen Liu, Saul E. Greenhut, Xusheng Zhang
  • Publication number: 20240042213
    Abstract: A medical device is configured to determine time intervals between consecutive cardiac events sensed from a cardiac electrical signal, increase a value of a tachyarrhythmia interval count in response to each of the determine time intervals detected as a tachyarrhythmia interval. The device is further configured to detect normal sinus rhythm events and the decrease the value of the tachyarrhythmia interval count in response to a threshold number of detected normal sinus rhythm events.
    Type: Application
    Filed: October 20, 2023
    Publication date: February 8, 2024
    Inventors: Xusheng Zhang, Kevin L. Dehmer, Saul E. Greenhut, Troy E. Jackson, Yuanzhen Liu
  • Publication number: 20230381523
    Abstract: Ventricle-from-atrium (VfA) devices, systems, and methods may be configured to monitor a single channel of cardiac electrical activity and determine atrial events and ventricular events based on the single channel of cardiac electrical activity. Various processing, windowing, and thresholding may be used to identify atrial events and ventricular events within the single channel of cardiac electrical activity.
    Type: Application
    Filed: May 25, 2022
    Publication date: November 30, 2023
    Inventors: Yanina Grinberg, Troy E. Jackson, Eric R. Williams, John C. Stroebel, Karen J. Kleckner, Todd J. Sheldon, Mackenzie E. Hall, Saul E. Greenhut
  • Publication number: 20230346316
    Abstract: A medical device is configured to sense event signals from a cardiac electrical signal and determine maximum amplitudes of cardiac electrical signal segments associated with sensed event signals. The medical device is configured to determine at least one tachyarrhythmia metric based on at least a greatest one of the determined maximum amplitudes. The medical device may determine when the at least one tachyarrhythmia metric does not meet true tachyarrhythmia evidence and, in response, determine when the maximum amplitudes meet suspected noise criteria. The medical device may withhold a tachyarrhythmia detection and tachyarrhythmia therapy when suspected noise criteria are met.
    Type: Application
    Filed: July 11, 2023
    Publication date: November 2, 2023
    Inventors: Saul E. GREENHUT, Yuanzhen LIU, Xusheng ZHANG
  • Publication number: 20230330420
    Abstract: A medical device includes a motion sensor configured to sense a motion signal. The medical device includes a control circuit configured to determine at least one ventricular event metric from the motion signal sensed over multiple of atrial cycles, determine that the ventricular event metric meets atrioventricular block criteria and generate an output in response to determining the atrioventricular block.
    Type: Application
    Filed: June 20, 2023
    Publication date: October 19, 2023
    Inventors: Michelle M. GALARNEAU, Vincent P. GANION, Saul E. GREENHUT, Yanina GRINBERG, Todd J. SHELDON, Paul R. SOLHEIM, Hyun J. YOON
  • Patent number: 11737712
    Abstract: A medical device is configured to sense event signals from a cardiac electrical signal and determine maximum amplitudes of cardiac electrical signal segments associated with sensed event signals. The medical device is configured to determine at least one tachyarrhythmia metric based on at least a greatest one of the determined maximum amplitudes. The medical device may determine when the at least one tachyarrhythmia metric does not meet true tachyarrhythmia evidence and, in response, determine when the maximum amplitudes meet suspected noise criteria. The medical device may withhold a tachyarrhythmia detection and tachyarrhythmia therapy when suspected noise criteria are met.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: August 29, 2023
    Assignee: Medtronic, Inc.
    Inventors: Saul E. Greenhut, Yuanzhen Liu, Xusheng Zhang
  • Publication number: 20230264035
    Abstract: A medical device, such as an extra-cardiovascular implantable cardioverter defibrillator (ICD), senses R-waves from a first cardiac electrical signal by a first sensing channel and stores a time segment of a second cardiac electrical signal acquired by a second sensing channel in response to each sensed R-wave. The ICD determines morphology match scores from the stored time segments of the second cardiac electrical signal and, based on the morphology match scores, withholds detection of a tachyarrhythmia episode. In some examples, the ICD detects T-wave oversensing based on the morphology match scores and withholds detection of a tachyarrhythmia episode in response to detecting the T-wave oversensing.
    Type: Application
    Filed: May 3, 2023
    Publication date: August 24, 2023
    Inventors: Jian CAO, Saul E. GREENHUT, Xusheng ZHANG
  • Patent number: 11717688
    Abstract: A medical device includes a motion sensor configured to sense a motion signal. The medical device includes a control circuit configured to determine at least one ventricular event metric from the motion signal sensed over multiple of atrial cycles, determine that the ventricular event metric meets atrioventricular block criteria and generate an output in response to determining the atrioventricular block.
    Type: Grant
    Filed: April 2, 2021
    Date of Patent: August 8, 2023
    Assignee: Medtronic, Inc.
    Inventors: Michelle M. Galarneau, Vincent P. Ganion, Saul E. Greenhut, Yanina Grinberg, Todd J. Sheldon, Paul R. Solheim, Hyun J. Yoon
  • Publication number: 20230233131
    Abstract: A medical device is configured to sense an electrical signal and determine that signal to noise criteria are met based on electrical signal segments stored in response to sensed electrophysiological events. The medical device is configured to determine an increased gain signal segment from one of the stored electrical signal segments in response to determining that the signal to noise criteria are met. The medical device determines a noise metric from the increased gain signal segment. The stored electrical signal segment associated with the increased gain signal segment may be classified as a noise segment in response to the noise metric meeting noise detection criteria.
    Type: Application
    Filed: March 30, 2023
    Publication date: July 27, 2023
    Inventors: Xusheng Zhang, Saul E. Greenhut, Yuanzhen Liu
  • Publication number: 20230173279
    Abstract: A medical device is configured to determine tachyarrhythmia evidence in a cardiac signal segment received from a cardiac electrical signal sensed during a pacing escape interval started to schedule a pending cardiac pacing pulse. The medical device may delay the pending cardiac pacing pulse in response to determining the tachyarrhythmia evidence during the pacing escape interval.
    Type: Application
    Filed: November 9, 2022
    Publication date: June 8, 2023
    Inventors: Xusheng ZHANG, Saul E. GREENHUT, Yuanzhen LIU, Alfonso ARANDA HERNANDEZ, Michael W. HEINKS, Jean E. HUDSON, Timothy A. EBELING, Irving J. SANCHEZ, Scott R. HAWKINSON, Troy E. JACKSON, James VANDER HEYDEN
  • Patent number: 11654291
    Abstract: A medical device, such as an extra-cardiovascular implantable cardioverter defibrillator (ICD), senses R-waves from a first cardiac electrical signal by a first sensing channel and stores a time segment of a second cardiac electrical signal acquired by a second sensing channel in response to each sensed R-wave. The ICD determines morphology match scores from the stored time segments of the second cardiac electrical signal and, based on the morphology match scores, withholds detection of a tachyarrhythmia episode. In some examples, the ICD detects T-wave oversensing based on the morphology match scores and withholds detection of a tachyarrhythmia episode in response to detecting the T-wave oversensing.
    Type: Grant
    Filed: November 27, 2020
    Date of Patent: May 23, 2023
    Assignee: MEDTRONIC, INC.
    Inventors: Jian Cao, Saul E. Greenhut, Xusheng Zhang
  • Publication number: 20230148939
    Abstract: A medical device is configured to determine an amplitude metric from a cardiac signal segment sensed over a predetermined time interval and determine if the amplitude metric meets an amplitude threshold. The medical device is configured to perform a first analysis of the cardiac electrical signal segment for detecting a first arrhythmia when the amplitude metric does not meet the amplitude threshold and perform a second analysis of the cardiac electrical signal segment for detecting a second arrhythmia different than the first arrhythmia in response to the amplitude metric meeting the amplitude threshold.
    Type: Application
    Filed: October 7, 2022
    Publication date: May 18, 2023
    Inventors: Alfonso ARANDA HERNANDEZ, Timothy A. EBELING, Saul E. GREENHUT, Troy E. JACKSON, Yuanzhen LIU, Irving J. SANCHEZ, James A. VANDER HEYDEN, Xusheng ZHANG
  • Publication number: 20230107061
    Abstract: A medical device is configured to receive cardiac electrical signals and sense ventricular event signals from the cardiac electrical signals. The medical device may start a validation window in response to sensing a ventricular event signal and determine if the ventricular event signal is a valid event signal or an invalid event signal based on processing of a different cardiac electrical signal than the cardiac electrical signal from which the ventricular event signal was sensed.
    Type: Application
    Filed: August 26, 2022
    Publication date: April 6, 2023
    Inventors: Saul E. GREENHUT, Alfonso ARANDA HERNANDEZ, Timothy A. EBELING, Michael W. HEINKS, Jean E. HUDSON, Troy E. JACKSON, Yuanzhen LIU, Irving J. SANCHEZ, James A. VANDER HEYDEN, Xusheng ZHANG
  • Patent number: 11617534
    Abstract: A medical device is configured to sense an electrical signal and determine that signal to noise criteria are met based on electrical signal segments stored in response to sensed electrophysiological events. The medical device is configured to determine an increased gain signal segment from one of the stored electrical signal segments in response to determining that the signal to noise criteria are met. The medical device determines a noise metric from the increased gain signal segment. The stored electrical signal segment associated with the increased gain signal segment may be classified as a noise segment in response to the noise metric meeting noise detection criteria.
    Type: Grant
    Filed: February 10, 2021
    Date of Patent: April 4, 2023
    Assignee: Medtronic, Inc.
    Inventors: Xusheng Zhang, Saul E. Greenhut, Yuanzhen Liu
  • Publication number: 20230100431
    Abstract: A medical device is configured to sense first ventricular event signals from a first cardiac electrical signal and sense second ventricular event signals from a second cardiac electrical signal. The medical device is configured to determine sensed event data in response to the first ventricular event signals and the second ventricular event signals. The medical device may select one of the first cardiac electrical signal or the second cardiac electrical signal for providing input for tachyarrhythmia detection based on the sensed event data.
    Type: Application
    Filed: August 29, 2022
    Publication date: March 30, 2023
    Inventors: Yuanzhen LIU, Alfonso ARANDA HERNANDEZ, Timothy A. EBELING, Saul E. GREENHUT, Michael W. HEINKS, Jean E. HUDSON, Troy E. JACKSON, Irving J. SANCHEZ, James A. VANDER HEYDEN, Xusheng ZHANG
  • Publication number: 20220346693
    Abstract: The control module of a first pacemaker included in an implantable medical device system including the first pacemaker and a second pacemaker is configured to set a pacing escape interval in response to a far field pacing pulse sensed by the first pacemaker. The far field pacing pulse is a pacing pulse delivered by the second pacemaker. The pacing escape interval is allowed to continue without restarting the in response to a far field intrinsic event sensed by the first pacemaker during the pacing escape interval. The first pacemaker delivers a cardiac pacing pulse to the heart upon expiration of the pacing escape interval.
    Type: Application
    Filed: July 18, 2022
    Publication date: November 3, 2022
    Inventors: Wade M. Demmer, Todd J. Sheldon, Saul E. Greenhut, James D. Reinke
  • Publication number: 20220347487
    Abstract: An extra-cardiovascular implantable cardioverter defibrillator senses R-waves from a first cardiac electrical signal by a first sensing channel and stores a time segment of a second cardiac electrical signal in response to each sensed R-wave. The ICD determines intervals between successively sensed R-waves and, in response to at least a predetermined number of the intervals being less than a tachyarrhythmia detection interval, analyzes at least a portion of the time segment of the second cardiac electrical signal corresponding to a most recent one of the sensed R-waves to confirm the most recent one of the R-waves. The ICD updates an unconfirmed beat count in response to the most recent one of the R-waves not being confirmed and withholds detection of a tachyarrhythmia episode in response to the unconfirmed beat count being equal to or greater than a rejection threshold.
    Type: Application
    Filed: July 15, 2022
    Publication date: November 3, 2022
    Inventors: Xusheng ZHANG, Jian CAO, Saul E. GREENHUT, Robert W. STADLER