Patents by Inventor Saulius Varnas

Saulius Varnas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240045235
    Abstract: A progressive spectacle lens, a method for its production, and a related computer program are disclosed. The progressive spectacle lens has a progressive surface including a central viewing zone, a lower viewing zone, two peripheral vision zones extending bilaterally from a vertical meridian of the progressive surface, and an upper viewing zone. The central viewing zone has a surface power providing a first refracting power for distance vision and the lower viewing zone has a greater surface power than the central viewing zone providing a second refracting power corresponding to near vision and being connected to the central viewing zone by a first progressing power region. The progressive spectacle lens generates a retarding or arresting effect on myopia progression, especially in myopic juveniles.
    Type: Application
    Filed: October 19, 2023
    Publication date: February 8, 2024
    Inventors: Ray Steven Spratt, Saulius Varnas, Philipp Jester
  • Patent number: 10976573
    Abstract: A computer-implemented method for providing a lens shape for an ophthalmic lens is disclosed. Further, there is provided a method for angular smoothing of a surface determined by carrier lines radially outwards of a prescription zone bordered by a first boundary line. In addition, there is provided an ophthalmic lens, in particular, a spectacle lens. Moreover, a method for minimizing the difference in thickness between two ophthalmic lenses for the same spectacles is provided. A computer program product and a machine-readable storage medium are provided as well.
    Type: Grant
    Filed: May 3, 2019
    Date of Patent: April 13, 2021
    Assignee: Carl Zeiss Vision International GmbH
    Inventors: Ray Steven Spratt, Philipp Ellinger, Helmut Wietschorke, Angela Nolan, Saulius Varnas
  • Patent number: 10782541
    Abstract: The current invention is directed to a computer-implemented method for providing a lens shape for an ophthalmic lens. Further, there is provided a method for angular smoothing of a surface determined by carrier lines radially outwards of a prescription zone bordered by a first boundary line. Further, there is provided an ophthalmic lens, in particular a spectacle lens. Further, a method for minimizing the difference in thickness between two ophthalmic lenses for the same spectacles. A computer program product and a machine readable storage medium are provided as well.
    Type: Grant
    Filed: February 29, 2016
    Date of Patent: September 22, 2020
    Assignee: Carl Zeiss Vision International GmbH
    Inventors: Ray Steven Spratt, Philipp Ellinger, Helmut Wietschorke, Angela Nolan, Saulius Varnas
  • Patent number: 10775642
    Abstract: A computer-implemented method for providing a lens shape for an ophthalmic lens is disclosed. Further, there is provided a method for angular smoothing of a surface determined by carrier lines radially outwards of a prescription zone bordered by a first boundary line. In addition, there is provided an ophthalmic lens, in particular, a spectacle lens. Moreover, a method for minimizing the difference in thickness between two ophthalmic lenses for the same spectacles is provided. A computer program product and a machine-readable storage medium are provided as well.
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: September 15, 2020
    Assignee: Carl Zeiss Vision International GmbH
    Inventors: Ray Steven Spratt, Philipp Ellinger, Helmut Wietschorke, Angela Nolan, Saulius Varnas
  • Patent number: 10775641
    Abstract: A computer-implemented method for providing a lens shape for an ophthalmic lens is disclosed. Further, there is provided a method for angular smoothing of a surface determined by carrier lines radially outwards of a prescription zone bordered by a first boundary line. In addition, there is provided an ophthalmic lens, in particular, a spectacle lens. Moreover, a method for minimizing the difference in thickness between two ophthalmic lenses for the same spectacles is provided. A computer program product and a machine-readable storage medium are provided as well.
    Type: Grant
    Filed: May 22, 2018
    Date of Patent: September 15, 2020
    Assignee: Carl Zeiss Vision International GmbH
    Inventors: Ray Steven Spratt, Philipp Ellinger, Helmut Wietschorke, Angela Nolan, Saulius Varnas
  • Patent number: 10394054
    Abstract: A progressive spectacle lens includes an upper viewing zone with a distance reference point providing a first refractive power, in particular a first mean refractive power, adapted to distance vision; a lower viewing zone with a near reference point providing a second refractive power, in particular the second mean refractive power, adapted to near vision, the second refractive power, in particular the second mean refractive power, representing an addition power relative to the first refractive power, in particular the first mean refractive power; a corridor between the upper viewing zone and the lower viewing zone in which the refractive power gradually changes from the first refractive power, in particular the first mean refractive power, to the second refractive power, in particular the second mean refractive power; and a left peripheral zone and a right peripheral zone, which are separated by the corridor and the lower viewing zone.
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: August 27, 2019
    Assignee: Carl Zeiss Vision International GmbH
    Inventor: Saulius Varnas
  • Publication number: 20190258082
    Abstract: A computer-implemented method for providing a lens shape for an ophthalmic lens is disclosed. Further, there is provided a method for angular smoothing of a surface determined by carrier lines radially outwards of a prescription zone bordered by a first boundary line. In addition, there is provided an ophthalmic lens, in particular, a spectacle lens. Moreover, a method for minimizing the difference in thickness between two ophthalmic lenses for the same spectacles is provided. A computer program product and a machine-readable storage medium are provided as well.
    Type: Application
    Filed: May 3, 2019
    Publication date: August 22, 2019
    Inventors: Ray Steven Spratt, Philipp Ellinger, Helmut Wietschorke, Angela Nolan, Saulius Varnas
  • Publication number: 20190155057
    Abstract: A progressive spectacle lens includes an upper viewing zone with a distance reference point providing a first refractive power, in particular a first mean refractive power, adapted to distance vision; a lower viewing zone with a near reference point providing a second refractive power, in particular the second mean refractive power, adapted to near vision, the second refractive power, in particular the second mean refractive power, representing an addition power relative to the first refractive power, in particular the first mean refractive power; a corridor between the upper viewing zone and the lower viewing zone in which the refractive power gradually changes from the first refractive power, in particular the first mean refractive power, to the second refractive power, in particular the second mean refractive power; and a left peripheral zone and a right peripheral zone, which are separated by the corridor and the lower viewing zone.
    Type: Application
    Filed: January 22, 2019
    Publication date: May 23, 2019
    Inventor: Saulius Varnas
  • Publication number: 20180275423
    Abstract: A computer-implemented method for providing a lens shape for an ophthalmic lens is disclosed. Further, there is provided a method for angular smoothing of a surface determined by carrier lines radially outwards of a prescription zone bordered by a first boundary line. In addition, there is provided an ophthalmic lens, in particular, a spectacle lens. Moreover, a method for minimizing the difference in thickness between two ophthalmic lenses for the same spectacles is provided. A computer program product and a machine-readable storage medium are provided as well.
    Type: Application
    Filed: May 25, 2018
    Publication date: September 27, 2018
    Inventors: Ray Steven Spratt, Philipp Ellinger, Helmut Wietschorke, Angela Nolan, Saulius Varnas
  • Publication number: 20180267330
    Abstract: A computer-implemented method for providing a lens shape for an ophthalmic lens is disclosed. Further, there is provided a method for angular smoothing of a surface determined by carrier lines radially outwards of a prescription zone bordered by a first boundary line. In addition, there is provided an ophthalmic lens, in particular, a spectacle lens. Moreover, a method for minimizing the difference in thickness between two ophthalmic lenses for the same spectacles is provided. A computer program product and a machine-readable storage medium are provided as well.
    Type: Application
    Filed: May 22, 2018
    Publication date: September 20, 2018
    Inventors: Ray Steven Spratt, Philipp Ellinger, Helmut Wietschorke, Angela Nolan, Saulius Varnas
  • Publication number: 20170146818
    Abstract: The current invention is directed to a computer-implemented method for providing a lens shape for an ophthalmic lens. Further, there is provided a method for angular smoothing of a surface determined by carrier lines radially outwards of a prescription zone bordered by a first boundary line. Further, there is provided an ophthalmic lens, in particular a spectacle lens. Further, a method for minimizing the difference in thickness between two ophthalmic lenses for the same spectacles. A computer program product and a machine readable storage medium are provided as well.
    Type: Application
    Filed: February 29, 2016
    Publication date: May 25, 2017
    Inventors: Ray Steven Spratt, Philipp Ellinger, Helmut Wietschorke, Angela Nolan, Saulius Varnas
  • Publication number: 20050270482
    Abstract: A method and system for designing a progressive lens is disclosed. The method includes modifying a reference progressive lens design having a peripheral design which is suitable for a wearer and design features with known values. The modification of the reference progressive lens design provides a new progressive lens design in which at least one of the design features have been customised according to the wearer's preference. The new progressive lens design has substantially the same peripheral design as the reference progressive lens design.
    Type: Application
    Filed: May 19, 2005
    Publication date: December 8, 2005
    Applicant: SOLA INTERNATIONAL HOLDINGS LIMITED
    Inventors: Scott Fisher, Saulius Varnas, Ray Spratt
  • Publication number: 20050122472
    Abstract: The present invention involves the prescribing and/or dispensing ophthalmic lenses, such as progressive addition lenses, for a wearer. In one form of the invention lens usage information is obtained from a wearer and entered into a programmed computer. The programmed computer processes the lens usage information to provide a separate weighted lifestyle score for each of one or more respective lifestyle score categories, such that each weighted lifestyle score is a function of a predetermined relationship between the respective lifestyle score category and at least ophthalmic lens design feature. The programmed computer then selects or designs an ophthalmic lens design using one or more of the weighted lifestyle scores such that the selected or designed ophthalmic lens has at least one lens design feature which has been customised using one or more of the weighted lifestyle scores.
    Type: Application
    Filed: December 13, 2002
    Publication date: June 9, 2005
    Inventors: Scott Fisher, Saulius Varnas, John Bonnett
  • Publication number: 20050083482
    Abstract: A progressive ophthalmic lens element including a lens surface having an upper viewing zone having a surface power to achieve a refracting power corresponding to distance vision, a lower viewing zone having a different surface power than the upper viewing zone to achieve a refracting power corresponding to near vision; and an intermediate zone extending across the lens element having a surface power varying from that of the upper viewing zone to that of the lower viewing zone one or more of the upper, intermediate and lower viewing zones being designed optically to reduce or minimise a selected measure of blur for the corresponding range of object distances; and at least a portion of the peripheral region of the surface of the ophthalmic lens element being designed to reduce or minimise one or more surface characteristics known to correlate with the sensation of swim.
    Type: Application
    Filed: December 4, 2002
    Publication date: April 21, 2005
    Applicant: Sola International Holdings, Ltd
    Inventors: Anthony Miller, Saulius Varnas, Michael Morris, Warren Fisher, Angela Nolan, Kym Stockman