Patents by Inventor Saurajit Mukherjee

Saurajit Mukherjee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11947589
    Abstract: Systems and methods directed to returning personalized image-based search results are described. In examples, a query including an image may be received, and a personalized item embedding may be generated based on the image and user profile information associated with a user. Further, a plurality of candidate images may be obtained based on the personalized item embedding. The candidate images may then be ranked according to a predicted level of user engagement for a user, and then diversified to ensure visual diversity among the ranked images. A portion of the diversified images may then be returned in response to an image-based search.
    Type: Grant
    Filed: March 31, 2022
    Date of Patent: April 2, 2024
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Li Huang, Rui Xia, Zhiting Chen, Kun Wu, Meenaz Merchant, Kamal Ginotra, Arun K. Sacheti, Chu Wang, Andrew Lawrence Stewart, Hanmu Zuo, Saurajit Mukherjee
  • Patent number: 11372914
    Abstract: The description relates to diversified hybrid image annotation for annotating images. One implementation includes generating first image annotations for a query image using a retrieval-based image annotation technique. Second image annotations can be generated for the query image using a model-based image annotation technique. The first and second image annotations can be integrated to generate a diversified hybrid image annotation result for the query image.
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: June 28, 2022
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Yokesh Kumar, Kuang-Huei Lee, Houdong Hu, Li Huang, Arun Sacheti, Meenaz Merchant, Linjun Yang, Tianjun Xiao, Saurajit Mukherjee
  • Patent number: 10997468
    Abstract: Non-limiting examples described herein relate to ensemble model processing for image recognition that improves precision and recall for image recognition processing as compared with existing solutions. An exemplary ensemble model is configured enhance image recognition processing through aggregate data modeling processing that evaluates image recognition prediction results obtained through processing that comprises: nearest neighbor visual search analysis, categorical image classification analysis and/or categorical instance retrieval analysis. An exemplary ensemble model is scalable, where new segments/categories can be bootstrapped to build deeper learning models and achieve high precision image recognition, while the cost of implementation (including from a bandwidth and resource standpoint) is lower than what is currently available across the industry today.
    Type: Grant
    Filed: February 24, 2020
    Date of Patent: May 4, 2021
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Arun Sacheti, Fnu Yokesh Kumar, Saurajit Mukherjee, Nikesh Srivastava, Yan Wang, Kuang-Huei Lee, Surendra Ulabala
  • Publication number: 20200193237
    Abstract: Non-limiting examples described herein relate to ensemble model processing for image recognition that improves precision and recall for image recognition processing as compared with existing solutions. An exemplary ensemble model is configured enhance image recognition processing through aggregate data modeling processing that evaluates image recognition prediction results obtained through processing that comprises: nearest neighbor visual search analysis, categorical image classification analysis and/or categorical instance retrieval analysis. An exemplary ensemble model is scalable, where new segments/categories can be bootstrapped to build deeper learning models and achieve high precision image recognition, while the cost of implementation (including from a bandwidth and resource standpoint) is lower than what is currently available across the industry today.
    Type: Application
    Filed: February 24, 2020
    Publication date: June 18, 2020
    Inventors: Arun Sacheti, FNU Yokesh Kumar, Saurajit Mukherjee, Nikesh Srivastava, Yan Wang, Kuang-Huei Lee, Surendra Ulabala
  • Patent number: 10607118
    Abstract: Non-limiting examples described herein relate to ensemble model processing for image recognition that improves precision and recall for image recognition processing as compared with existing solutions. An exemplary ensemble model is configured enhance image recognition processing through aggregate data modeling processing that evaluates image recognition prediction results obtained through processing that comprises: nearest neighbor visual search analysis, categorical image classification analysis and/or categorical instance retrieval analysis. An exemplary ensemble model is scalable, where new segments/categories can be bootstrapped to build deeper learning models and achieve high precision image recognition, while the cost of implementation (including from a bandwidth and resource standpoint) is lower than what is currently available across the industry today.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: March 31, 2020
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Arun Sacheti, FNU Yokesh Kumar, Saurajit Mukherjee, Nikesh Srivastava, Yan Wang, Kuang-Huei Lee, Surendra Ulabala
  • Publication number: 20190180146
    Abstract: Non-limiting examples described herein relate to ensemble model processing for image recognition that improves precision and recall for image recognition processing as compared with existing solutions. An exemplary ensemble model is configured enhance image recognition processing through aggregate data modeling processing that evaluates image recognition prediction results obtained through processing that comprises: nearest neighbor visual search analysis, categorical image classification analysis and/or categorical instance retrieval analysis. An exemplary ensemble model is scalable, where new segments/categories can be bootstrapped to build deeper learning models and achieve high precision image recognition, while the cost of implementation (including from a bandwidth and resource standpoint) is lower than what is currently available across the industry today.
    Type: Application
    Filed: December 13, 2017
    Publication date: June 13, 2019
    Inventors: Arun Sacheti, FNU Yokesh Kumar, Saurajit Mukherjee, Nikesh Srivastava, Yan Wang, Kuang-Huei Lee, Surendra Ulabala