Patents by Inventor Sauvik Chowdhury
Sauvik Chowdhury has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12166090Abstract: An electronic device can include a substrate, an active region of a transistor, and a shield electrode. The substrate can define a trench and include a mesa adjacent to the trench, and the shield electrode can be within the trench. In an embodiment, the electronic device can further include an active region of a transistor within the mesa and an insulating layer including a thicker section and a thinner section closer to a bottom of the trench. In another embodiment, the electronic device can include a body region and a doped region within the mesa and spaced apart from the body region by a semiconductor region. The doped region can have a dopant concentration that is higher than a dopant concentration of the semiconductor region and a portion of the substrate underlying the doped region.Type: GrantFiled: April 26, 2022Date of Patent: December 10, 2024Assignee: Semiconductor Components Industries, LLCInventors: Zia Hossain, Joseph Andrew Yedinak, Sauvik Chowdhury, Muh-Ling Ger
-
Publication number: 20240055512Abstract: A semiconductor device includes a first source region, a first sidewall body region, a gate region, a second source region and a link region formed in a substrate of a first conductivity type. The first source region and the second source region may be of the first conductivity type while the first sidewall body region and the link region may be of a second conductivity type opposite to the first conductivity type. The link region and the gate region are respectively disposed at a first side and a second side of the first source region. The first sidewall body region may be disposed below or underneath the first source region.Type: ApplicationFiled: August 8, 2023Publication date: February 15, 2024Inventors: Vipindas Pala, Sauvik Chowdhury
-
Publication number: 20240055514Abstract: A method for manufacturing a semiconductor device includes preparing a substrate of a first conductivity type having a drain region, forming a first source region and a second source region of the first conductivity type in the substrate separated from each other, and forming a gate trench of a gate region disposed closely next to or in adjoining neighbor to the first source region. The method may further include forming a first sidewall body region of a second conductivity type to separate the first source region from the second source region, forming a link region of the second conductivity type such that the link region and the gate trench are disposed spatially opposite to each other, forming a gate insulation layer to coat and line sidewalls and a bottom of the gate trench, and using a gate conductive material to fill the gate trench.Type: ApplicationFiled: August 8, 2023Publication date: February 15, 2024Inventors: Vipindas Pala, Sauvik Chowdhury
-
Publication number: 20240055473Abstract: A semiconductor device includes a first source region, a first sidewall body region, a gate region, a second source region and a link region formed in a substrate of a first conductivity type. The first source region and the second source region may be of the first conductivity type while the first sidewall body region and the link region may be of a second conductivity type opposite to the first conductivity type. The link region and the gate region are respectively disposed at a first side and a second side of the first source region. The first sidewall body region may be disposed below or underneath the first source region.Type: ApplicationFiled: August 8, 2023Publication date: February 15, 2024Inventors: Vipindas Pala, Sauvik Chowdhury
-
Publication number: 20240055511Abstract: A semiconductor device includes a first source region, a first sidewall body region, a gate region, a second source region and a link region formed in a substrate of a first conductivity type. The first source region and the second source region may be of the first conductivity type while the first sidewall body region and the link region may be of a second conductivity type opposite to the first conductivity type. The link region and the gate region are respectively disposed at a first side and a second side of the first source region. The first sidewall body region may be disposed below or underneath the first source region.Type: ApplicationFiled: August 8, 2023Publication date: February 15, 2024Inventors: Vipindas Pala, Sauvik Chowdhury
-
Publication number: 20240055513Abstract: A method for manufacturing a semiconductor device includes preparing a substrate of a first conductivity type having a drain region, forming a first source region and a second source region of the first conductivity type in the substrate separated from each other, and forming a gate trench of a gate region disposed closely next to or in adjoining neighbor to the first source region. The method may further include forming a first sidewall body region of a second conductivity type to separate the first source region from the second source region, forming a link region of the second conductivity type such that the link region and the gate trench are disposed spatially opposite to each other, forming a gate insulation layer to coat and line sidewalls and a bottom of the gate trench, and using a gate conductive material to fill the gate trench.Type: ApplicationFiled: August 8, 2023Publication date: February 15, 2024Inventors: Vipindas Pala, Sauvik Chowdhury
-
Publication number: 20220254889Abstract: An electronic device can include a substrate, an active region of a transistor, and a shield electrode. The substrate can define a trench and include a mesa adjacent to the trench, and the shield electrode can be within the trench. In an embodiment, the electronic device can further include an active region of a transistor within the mesa and an insulating layer including a thicker section and a thinner section closer to a bottom of the trench. In another embodiment, the electronic device can include a body region and a doped region within the mesa and spaced apart from the body region by a semiconductor region. The doped region can have a dopant concentration that is higher than a dopant concentration of the semiconductor region and a portion of the substrate underlying the doped region.Type: ApplicationFiled: April 26, 2022Publication date: August 11, 2022Applicant: Semiconductor Components Industries, LLCInventors: Zia Hossain, Joseph Andrew Yedinak, Sauvik Chowdhury, Muh-Ling Ger
-
Patent number: 11342424Abstract: An electronic device can include a substrate, an active region of a transistor, and a shield electrode. The substrate can define a trench and include a mesa adjacent to the trench, and the shield electrode can be within the trench. In an embodiment, the electronic device can further include an active region of a transistor within the mesa and an insulating layer including a thicker section and a thinner section closer to a bottom of the trench. In another embodiment, the electronic device can include a body region and a doped region within the mesa and spaced apart from the body region by a semiconductor region. The doped region can have a dopant concentration that is higher than a dopant concentration of the semiconductor region and a portion of the substrate underlying the doped region.Type: GrantFiled: April 13, 2020Date of Patent: May 24, 2022Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLCInventors: Zia Hossain, Joseph Andrew Yedinak, Sauvik Chowdhury, Muh-Ling Ger
-
Patent number: 11309414Abstract: Metal-Oxide-Semiconductor (MOS) controlled semiconductor devices and methods of making the devices are provided. The devices include a gate which controls current flow through channel regions positioned between source/emitter and drain regions of the device. The devices include a gate oxide layer having a variable thickness. The thickness of the gate oxide layer under the edge of the gate and over the source/emitter regions is different than the thickness over the channel regions of the device. The oxide layer thickness near the edge of the gate can be greater than the oxide layer thickness over the channel regions. The source/emitter regions can be implanted to provide enhanced oxide growth during gate oxide formation. The source/emitter region can include regions that are implanted to provide enhanced oxide growth during gate oxide formation and regions which do not provide enhanced oxide growth during gate oxide formation. The devices can be SiC devices such as SiC MOSFETs and SiC IGBTs.Type: GrantFiled: February 6, 2020Date of Patent: April 19, 2022Assignee: Monolith Semiconductor Inc.Inventors: Kevin Matocha, Sauvik Chowdhury, Kiran Chatty, John Nowak
-
Publication number: 20210320178Abstract: An electronic device can include a substrate, an active region of a transistor, and a shield electrode. The substrate can define a trench and include a mesa adjacent to the trench, and the shield electrode can be within the trench. In an embodiment, the electronic device can further include an active region of a transistor within the mesa and an insulating layer including a thicker section and a thinner section closer to a bottom of the trench. In another embodiment, the electronic device can include a body region and a doped region within the mesa and spaced apart from the body region by a semiconductor region. The doped region can have a dopant concentration that is higher than a dopant concentration of the semiconductor region and a portion of the substrate underlying the doped region.Type: ApplicationFiled: April 13, 2020Publication date: October 14, 2021Applicant: Semiconductor Components Industries, LLCInventors: Zia Hossain, Joseph Andrew Yedinak, Sauvik Chowdhury, Muh-Ling Ger
-
Publication number: 20200176596Abstract: Metal-Oxide-Semiconductor (MOS) controlled semiconductor devices and methods of making the devices are provided. The devices include a gate which controls current flow through channel regions positioned between source/emitter and drain regions of the device. The devices include a gate oxide layer having a variable thickness. The thickness of the gate oxide layer under the edge of the gate and over the source/emitter regions is different than the thickness over the channel regions of the device. The oxide layer thickness near the edge of the gate can be greater than the oxide layer thickness over the channel regions. The source/emitter regions can be implanted to provide enhanced oxide growth during gate oxide formation. The source/emitter region can include regions that are implanted to provide enhanced oxide growth during gate oxide formation and regions which do not provide enhanced oxide growth during gate oxide formation. The devices can be SiC devices such as SiC MOSFETs and SiC IGBTs.Type: ApplicationFiled: February 6, 2020Publication date: June 4, 2020Applicant: Monolith Semiconductor Inc.Inventors: Kevin Matocha, Sauvik Chowdhury, Kiran Chatty, John Nowak
-
Patent number: 10622472Abstract: Metal-Oxide-Semiconductor (MOS) controlled semiconductor devices and methods of making the devices are provided. The devices include a gate which controls current flow through channel regions positioned between source/emitter and drain regions of the device. The devices include a gate oxide layer having a variable thickness. The thickness of the gate oxide layer under the edge of the gate and over the source/emitter regions is different than the thickness over the channel regions of the device. The oxide layer thickness near the edge of the gate can be greater than the oxide layer thickness over the channel regions. The source/emitter regions can be implanted to provide enhanced oxide growth during gate oxide formation. The source/emitter region can include regions that are implanted to provide enhanced oxide growth during gate oxide formation and regions which do not provide enhanced oxide growth during gate oxide formation. The devices can be SiC devices such as SiC MOSFETs and SiC IGBTs.Type: GrantFiled: June 27, 2019Date of Patent: April 14, 2020Assignee: Monolith Semiconductor Inc.Inventors: Kevin Matocha, Sauvik Chowdhury, Kiran Chatty, John Nowak
-
Publication number: 20190334025Abstract: Metal-Oxide-Semiconductor (MOS) controlled semiconductor devices and methods of making the devices are provided. The devices include a gate which controls current flow through channel regions positioned between source/emitter and drain regions of the device. The devices include a gate oxide layer having a variable thickness. The thickness of the gate oxide layer under the edge of the gate and over the source/emitter regions is different than the thickness over the channel regions of the device. The oxide layer thickness near the edge of the gate can be greater than the oxide layer thickness over the channel regions. The source/emitter regions can be implanted to provide enhanced oxide growth during gate oxide formation. The source/emitter region can include regions that are implanted to provide enhanced oxide growth during gate oxide formation and regions which do not provide enhanced oxide growth during gate oxide formation. The devices can be SiC devices such as SiC MOSFETs and SiC IGBTs.Type: ApplicationFiled: June 27, 2019Publication date: October 31, 2019Applicant: Monolith Semiconductor Inc.Inventors: Kevin Matocha, Sauvik Chowdhury, Kiran Chatty, John Nowak
-
Patent number: 10361296Abstract: Metal-Oxide-Semiconductor (MOS) controlled semiconductor devices and methods of making the devices are provided. The devices include a gate which controls current flow through channel regions positioned between source/emitter and drain regions of the device. The devices include a gate oxide layer having a variable thickness. The thickness of the gate oxide layer under the edge of the gate and over the source/emitter regions is different than the thickness over the channel regions of the device. The oxide layer thickness near the edge of the gate can be greater than the oxide layer thickness over the channel regions. The source/emitter regions can be implanted to provide enhanced oxide growth during gate oxide formation. The source/emitter region can include regions that are implanted to provide enhanced oxide growth during gate oxide formation and regions which do not provide enhanced oxide growth during gate oxide formation. The devices can be SiC devices such as SiC MOSFETs and SiC IGBTs.Type: GrantFiled: June 29, 2017Date of Patent: July 23, 2019Assignee: Monolith Semiconductor Inc.Inventors: Kevin Matocha, Sauvik Chowdhury, Kiran Chatty, John Nowak
-
Publication number: 20190006505Abstract: Metal-Oxide-Semiconductor (MOS) controlled semiconductor devices and methods of making the devices are provided. The devices include a gate which controls current flow through channel regions positioned between source/emitter and drain regions of the device. The devices include a gate oxide layer having a variable thickness. The thickness of the gate oxide layer under the edge of the gate and over the source/emitter regions is different than the thickness over the channel regions of the device. The oxide layer thickness near the edge of the gate can be greater than the oxide layer thickness over the channel regions. The source/emitter regions can be implanted to provide enhanced oxide growth during gate oxide formation. The source/emitter region can include regions that are implanted to provide enhanced oxide growth during gate oxide formation and regions which do not provide enhanced oxide growth during gate oxide formation. The devices can be SiC devices such as SiC MOSFETs and SiC IGBTs.Type: ApplicationFiled: June 29, 2017Publication date: January 3, 2019Inventors: Kevin Matocha, Sauvik Chowdhury, Kiran Chatty, John Nowak