Patents by Inventor Sayata Ghose

Sayata Ghose has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190383759
    Abstract: An infrared camera is directed aft of a compaction roller of a composite laying head. Heat is applied to a substrate by a heater mounted forward of the compaction roller. Infrared images are captured of composite tows laid down on a substrate by the compaction roller. Whether the composite tows have sufficient contact is determined using the infrared images.
    Type: Application
    Filed: June 14, 2018
    Publication date: December 19, 2019
    Inventors: Brice A. Johnson, Sayata Ghose, Tyler M. Holmes, Hong Hue Tat, Gary Ernest Georgeson
  • Publication number: 20190193345
    Abstract: Systems and methods are provided for dynamically managing heater position for an Automated Fiber Placement (AFP) machine. One embodiment is a method that includes retrieving distance data indicating predicted distances of a heating surface of a heater of the AFP machine to a surface of a laminate being laid-up by the AFP machine, for each of multiple locations along a path. The method also includes directing the AFP machine to lay up the laminate in accordance with a Numerical Control (NC) program, identifying a current location of the heater in the path, determining a speed at which the heater of the AFP machine is moving, correlating the current location of the heater with a predicted distance, and adjusting an amount of power for the heater at the current location based on the predicted distance that was correlated with the current location, and the speed at the current location.
    Type: Application
    Filed: February 27, 2019
    Publication date: June 27, 2019
    Inventors: Jeron D. Moore, Brice A. Johnson, Samuel F. Pedigo, Sayata Ghose
  • Patent number: 10252478
    Abstract: Systems and methods are provided for dynamically managing heater position for an Automated Fiber Placement (AFP) machine. One embodiment is a method that includes retrieving distance data indicating predicted distances of a heating surface of a heater of the AFP machine to a surface of a laminate being laid-up by the AFP machine, for each of multiple locations along a path. The method also includes directing the AFP machine to lay up the laminate in accordance with a Numerical Control (NC) program, identifying a current location of the heater in the path, determining a speed at which the heater of the AFP machine is moving, correlating the current location of the heater with a predicted distance, and adjusting an amount of power for the heater at the current location based on the predicted distance that was correlated with the current location, and the speed at the current location.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: April 9, 2019
    Assignee: The Boeing Company
    Inventors: Jeron D Moore, Brice A Johnson, Samuel F Pedigo, Sayata Ghose
  • Publication number: 20190061282
    Abstract: Closed-loop systems and methods for controlling the temperature at the compaction point as an automated fiber placement (AFP) machine is placing material over complex surface features at varying speeds. The closed-loop system starts with multiple infrared temperature sensors directed at the layup surface in front of the compaction roller and also at the new layup surface behind the compaction roller. These sensors supply direct temperature readings to a control computer, which also receives speed data and a listing of active tows from the AFP machine and is also programmed with the number of plies in the current layup. In accordance with one embodiment, the heater control system uses a proportional-integral-derivative loop to control the temperature at the compaction point (e.g., at the interface of the compaction roller and a newly laid tow) and regulate the heater power to achieve the desired temperature.
    Type: Application
    Filed: August 29, 2017
    Publication date: February 28, 2019
    Applicant: The Boeing Company
    Inventors: Brice A. Johnson, Samuel F. Pedigo, Sayata Ghose, John Z. Lin
  • Publication number: 20180065325
    Abstract: Systems and methods are provided for dynamically managing heater position for an Automated Fiber Placement (AFP) machine. One embodiment is a method that includes retrieving distance data indicating predicted distances of a heating surface of a heater of the AFP machine to a surface of a laminate being laid-up by the AFP machine, for each of multiple locations along a path. The method also includes directing the AFP machine to lay up the laminate in accordance with a Numerical Control (NC) program, identifying a current location of the heater in the path, determining a speed at which the heater of the AFP machine is moving, correlating the current location of the heater with a predicted distance, and adjusting an amount of power for the heater at the current location based on the predicted distance that was correlated with the current location, and the speed at the current location.
    Type: Application
    Filed: September 8, 2016
    Publication date: March 8, 2018
    Inventors: Jeron D. Moore, Brice A. Johnson, Samuel F. Pedigo, Sayata Ghose
  • Patent number: 9475973
    Abstract: In the method of embodiments of the invention, the metal seeded carbon allotropes are reacted in solution forming zero valent metallic nanowires at the seeded sites. A polymeric passivating reagent, which selects for anisotropic growth is also used in the reaction to facilitate nanowire formation. The resulting structure resembles a porcupine, where carbon allotropes have metallic wires of nanometer dimensions that emanate from the seed sites on the carbon allotrope. These sites are populated by nanowires having approximately the same diameter as the starting nanoparticle diameter.
    Type: Grant
    Filed: March 26, 2014
    Date of Patent: October 25, 2016
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Robin E. Southward, Donavon Mark Delozier, Kent A. Watson, Joseph G. Smith, Jr., Sayata Ghose, John W. Connell
  • Patent number: 9238334
    Abstract: A method and apparatus for forming a stack of composite layers into a desired shape is present. The stack of composite layers may be positioned on a tool and a number of compressible supports such that the stack of composite layers may be substantially flat on the tool and the stack of composite layers may be substantially flat on the number of compressible supports. A flexible sheet may be placed on top of the stack of composite layers. A vacuum load may be applied on the stack of composite layers on the tool and the number of compressible supports using the flexible sheet such that consolidation of the stack of composite layers occurs to form a desired shape on the tool and the number of compressible supports compress during forming of the desired shape.
    Type: Grant
    Filed: July 20, 2015
    Date of Patent: January 19, 2016
    Assignee: THE BOEING COMPANY
    Inventors: William Thomas Kline, Larry Earl Gross, Sayata Ghose
  • Publication number: 20150321428
    Abstract: A method and apparatus for forming a stack of composite layers into a desired shape is present. The stack of composite layers may be positioned on a tool and a number of compressible supports such that the stack of composite layers may be substantially flat on the tool and the stack of composite layers may be substantially flat on the number of compressible supports. A flexible sheet may be placed on top of the stack of composite layers. A vacuum load may be applied on the stack of composite layers on the tool and the number of compressible supports using the flexible sheet such that consolidation of the stack of composite layers occurs to form a desired shape on the tool and the number of compressible supports compress during forming of the desired shape.
    Type: Application
    Filed: July 20, 2015
    Publication date: November 12, 2015
    Inventors: William Thomas Kline, Larry Earl Gross, Sayata Ghose
  • Patent number: 9120677
    Abstract: A scalable method allows preparation of bulk quantities of holey carbon allotropes with holes ranging from a few to over 100 nm in diameter. Carbon oxidation catalyst nanoparticles are first deposited onto a carbon allotrope surface in a facile, controllable, and solvent-free process. The catalyst-loaded carbons are then subjected to thermal treatment in air. The carbons in contact with the carbon oxidation catalyst nanoparticles are selectively oxidized into gaseous byproducts such as CO or CO2, leaving the surface with holes. The catalyst is then removed via refluxing in diluted nitric acid to obtain the final holey carbon allotropes. The average size of the holes correlates strongly with the size of the catalyst nanoparticles and is controlled by adjusting the catalyst precursor concentration. The temperature and time of the air oxidation step, and the catalyst removal treatment conditions, strongly affect the morphology of the holes.
    Type: Grant
    Filed: April 1, 2013
    Date of Patent: September 1, 2015
    Assignees: National Institute of Aerospace Associates, The United States of America as represented by the Administration of NASA
    Inventors: Kent Watson, Yi Lin, Sayata Ghose, John Connell
  • Patent number: 9120275
    Abstract: A method and apparatus for forming a stack of composite layers into a desired shape is present. The stack of composite layers may be positioned on a tool and a number of compressible supports such that the stack of composite layers may be substantially flat on the tool and the stack of composite layers may be substantially flat on the number of compressible supports. A flexible sheet may be placed on top of the stack of composite layers. A vacuum load may be applied on the stack of composite layers on the tool and the number of compressible supports using the flexible sheet such that consolidation of the stack of composite layers occurs to form a desired shape on the tool and the number of compressible supports compress during forming of the desired shape.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: September 1, 2015
    Assignee: THE BOEING COMPANY
    Inventors: William Thomas Kline, Larry Earl Gross, Sayata Ghose
  • Patent number: 8790773
    Abstract: A dielectric material includes a network of nanosubstrates, such as but not limited to nanotubes, nanosheets, or other nanomaterials or nanostructures, a polymer base material or matrix, and nanoparticles constructed at least partially of an elemental metal. The network has a predetermined nanosubstrate loading percentage by weight with respect to a total weight of the dielectric material, and a preferential or predetermined longitudinal alignment with respect to an orientation of an incident electrical field. A method of forming the dielectric material includes depositing the metal-based nanoparticles onto the nanosubstrates and subsequently mixing these with a polymer matrix. Once mixed, alignment can be achieved by melt extrusion or a similar mechanical shearing process. Alignment of the nanosubstrate may be in horizontal or vertical direction with respect to the orientation of an incident electrical field.
    Type: Grant
    Filed: July 16, 2008
    Date of Patent: July 29, 2014
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Kenneth L. Dudley, Holly A Elliott, John W. Connell, Joseph G. Smith, Sayata Ghose, Kent A. Watson, Donavon Mark Delozier
  • Publication number: 20140203206
    Abstract: In the method of embodiments of the invention, the metal seeded carbon allotropes are reacted in solution forming zero valent metallic nanowires at the seeded sites. A polymeric passivating reagent, which selects for anisotropic growth is also used in the reaction to facilitate nanowire formation. The resulting structure resembles a porcupine, where carbon allotropes have metallic wires of nanometer dimensions that emanate from the seed sites on the carbon allotrope. These sites are populated by nanowires having approximately the same diameter as the starting nanoparticle diameter.
    Type: Application
    Filed: March 26, 2014
    Publication date: July 24, 2014
    Inventors: Robin E. Southward, Donavon Mark Delozier, Kent A. Watson, Joseph G. Smith, JR., Sayata Ghose, John W. Connell
  • Patent number: 8703235
    Abstract: In the method of embodiments of the invention, the metal seeded carbon allotropes are reacted in solution forming zero valent metallic nanowires at the seeded sites. A polymeric passivating reagent, which selects for anisotropic growth is also used in the reaction to facilitate nanowire formation. The resulting structure resembles a porcupine, where carbon allotropes have metallic wires of nanometer dimensions that emanate from the seed sites on the carbon allotrope. These sites are populated by nanowires having approximately the same diameter as the starting nanoparticle diameter.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: April 22, 2014
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Robin E. Southward, Donavon Mark Delozier, Kent A. Watson, Joseph G. Smith, Sayata Ghose, John W. Connell
  • Patent number: 8508413
    Abstract: An antenna includes a ground plane, a dielectric disposed on the ground plane, and an electrically-conductive radiator disposed on the dielectric. The dielectric includes at least one layer of a first dielectric material and a second dielectric material that collectively define a dielectric geometric pattern, which may comprise a fractal geometry. The radiator defines a radiator geometric pattern, and the dielectric geometric pattern is geometrically identical, or substantially geometrically identical, to the radiator geometric pattern.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: August 13, 2013
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Kenneth L. Dudley, Holly A. Elliott, Robin L. Cravey, John W. Connell, Sayata Ghose, Kent A. Watson, Joseph G. Smith, Jr.
  • Publication number: 20110256197
    Abstract: In the method of embodiments of the invention, the metal seeded carbon allotropes are reacted in solution forming zero valent metallic nanowires at the seeded sites. A polymeric passivating reagent, which selects for anisotropic growth is also used in the reaction to facilitate nanowire formation. The resulting structure resembles a porcupine, where carbon allotropes have metallic wires of nanometer dimensions that emanate from the seed sites on the carbon allotrope. These sites are populated by nanowires having approximately the same diameter as the starting nanoparticle diameter.
    Type: Application
    Filed: April 8, 2011
    Publication date: October 20, 2011
    Applicant: United States of America as represented by the Administrator of the National Aeronautics and Spac
    Inventors: Robin E. Southward, Donavon Mark Delozier, Kent A. Watson, Joseph G. Smith, Sayata Ghose, John W. Connell
  • Publication number: 20110254739
    Abstract: An antenna includes a ground plane, a dielectric disposed on the ground plane, and an electrically-conductive radiator disposed on the dielectric. The dielectric includes at least one layer of a first dielectric material and a second dielectric material that collectively define a dielectric geometric pattern, which may comprise a fractal geometry. The radiator defines a radiator geometric pattern, and the dielectric geometric pattern is geometrically identical, or substantially geometrically identical, to the radiator geometric pattern.
    Type: Application
    Filed: April 8, 2011
    Publication date: October 20, 2011
    Applicant: U. S. A. as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Kenneth L. DUDLEY, Holly A. ELLIOTT, Robin L. CRAVEY, John W. CONNELL, Sayata GHOSE, Kent A. WATSON, Joseph G. SMITH
  • Patent number: 7704553
    Abstract: A process for depositing nanometer-sized metal particles onto a substrate in the absence of aqueous solvents, organic solvents, and reducing agents, and without any required pre-treatment of the substrate, includes preparing an admixture of a metal compound and a substrate by dry mixing a chosen amount of the metal compound with a chosen amount of the substrate; and supplying energy to the admixture in an amount sufficient to deposit zero valance metal particles onto the substrate. This process gives rise to a number of deposited metallic particle sizes which may be controlled. The compositions prepared by this process are used to produce polymer composites by combining them with readily available commodity and engineering plastics. The polymer composites are used as coatings, or they are used to fabricate articles, such as free-standing films, fibers, fabrics, foams, molded and laminated articles, tubes, adhesives, and fiber reinforced articles.
    Type: Grant
    Filed: February 23, 2007
    Date of Patent: April 27, 2010
    Assignees: National Institute of Aerospace Associates, The United States of America as represented by the Administrator of NASA
    Inventors: Kent A. Watson, Michael J. Fallbach, Sayata Ghose, Joseph G. Smith, Donavon M. Delozier, John W. Connell
  • Publication number: 20090022977
    Abstract: A dielectric material includes a network of nanosubstrates, such as but not limited to nanotubes, nanosheets, or other nanomaterials or nanostructures, a polymer base material or matrix, and nanoparticles constructed at least partially of an elemental metal. The network has a predetermined nanosubstrate loading percentage by weight with respect to a total weight of the dielectric material, and a preferential or predetermined longitudinal alignment with respect to an orientation of an incident electrical field. A method of forming the dielectric material includes depositing the metal-based nanoparticles onto the nanosubstrates and subsequently mixing these with a polymer matrix. Once mixed, alignment can be achieved by melt extrusion or a similar mechanical shearing process. Alignment of the nanosubstrate may be in horizontal or vertical direction with respect to the orientation of an incident electrical field.
    Type: Application
    Filed: July 16, 2008
    Publication date: January 22, 2009
    Applicant: USA as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Kenneth L. Dudley, Holly A. Elliott, John W. Connell, Joseph G. Smith, Sayata Ghose, Kent A. Watson, Donavon Mark Delozier
  • Publication number: 20070292699
    Abstract: A process for depositing nanometer-sized metal particles onto a substrate in the absence of aqueous solvents, organic solvents, and reducing agents, and without any required pretreatment of the substrate, includes preparing an admixture of a metal compound and a substrate by dry mixing a chosen amount of the metal compound with a chosen amount of the substrate; and supplying energy to the admixture in an amount sufficient to deposit zero valance metal particles onto the substrate. This process gives rise to a number of deposited metallic particle sizes which may be controlled. The compositions prepared by this process are used to produce polymer composites by combining them with readily available commodity and engineering plastics. The polymer composites are used as coatings, or they are used to fabricate articles, such as free-standing films, fibers, fabrics, foams, molded and laminated articles, tubes, adhesives, and fiber reinforced articles.
    Type: Application
    Filed: February 23, 2007
    Publication date: December 20, 2007
    Applicants: National Institute of Aerospace Associates, U.S.A. as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Kent Watson, Michael Fallbach, Sayata Ghose, Joseph Smith, Donavon Delozier, John Connell