Patents by Inventor Schickwann Tsai

Schickwann Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230159873
    Abstract: Hematopoietic stem cells are extremely difficult to maintain or expand in vitro. Two observations in traditional long-term bone marrow cultures strongly suggest that macrophages may be at the root of the problem: First, micromolar concentrations of hydrocortisone improve the longevity of long-term bone marrow cultures and hydrocortisone is known as a potent inhibitor of macrophage production of pro-inflammatory cytokines, chemokines, enzymes, nitrogen oxide and reactive oxygen species and redirects macrophages to the anti-inflammatory differentiation pathway; Second, the decline of hematopoiesis in long-term bone marrow cultures coincides with the development of large numbers of adherent and non-adherent macrophages including foreign body giant cells. These adherent macrophages and foreign body giant cells exhibit well-spread morphology, contain numerous lysosomes and phagolysosomes in the cytoplasm and are metabolically active.
    Type: Application
    Filed: October 23, 2022
    Publication date: May 25, 2023
    Inventor: Schickwann Tsai
  • Publication number: 20200131462
    Abstract: Hematopoietic stem cells are extremely difficult to maintain or expand in vitro. Two observations in traditional long-term bone marrow cultures strongly suggest that macrophages may be at the root of the problem: First, micromolar concentrations of hydrocortisone improve the longevity of long-term bone marrow cultures and hydrocortisone is known as a potent inhibitor of macrophage production of pro-inflammatory cytokines, chemokines, enzymes, nitrogen oxide and reactive oxygen species and redirects macrophages to the anti-inflammatory differentiation pathway; Second, the decline of hematopoiesis in long-term bone marrow cultures coincides with the development of large numbers of adherent and non-adherent macrophages including foreign body giant cells. These adherent macrophages and foreign body giant cells exhibit well-spread morphology, contain numerous lysosomes and phagolysosomes in the cytoplasm and are metabolically active.
    Type: Application
    Filed: August 28, 2019
    Publication date: April 30, 2020
    Inventor: Schickwann Tsai
  • Publication number: 20180362660
    Abstract: Penumbra is the newest member of the tetraspanin superfamily of membrane proteins. A major obstacle in penumbra research has been the lack of monoclonal antibodies against the native penumbra. In this invention, we detail the establishment and characterization of monoclonal antibodies that recognize both human and mouse penumbras on living cells. Furthermore, we created chimeric mouse-human IgG1 antibodies from these mouse monoclonal antibodies. Using these antibodies, we demonstrate for the first time that penumbra is expressed on the surface of virtually all CD19+ or CD20+ B lymphocytes in blood, bone marrow, spleen and lymph nodes. In vivo, these monoclonal antibodies shrank lymphoid follicles in spleen. Thus, these antibodies establish penumbra as a novel B cell marker with a wider range of expression level than CD19 or CD20. These monoclonal antibodies pave the way for new research and potential therapeutic applications in immunology, hematology and oncology.
    Type: Application
    Filed: February 19, 2017
    Publication date: December 20, 2018
    Inventor: Schickwann Tsai
  • Publication number: 20170081637
    Abstract: The invention relates to natural killer cells and methods for the development of immortalized natural killer cells and use of the natural killer cells. A growth and culture system is described that supports increased natural killer cell development, and provides for the establishment of continuous natural killer cell lines. Additionally, the disclosed method for generating natural killer cells may be used to produce large numbers of natural killer cells for therapeutic applications and for natural killer cell research.
    Type: Application
    Filed: November 30, 2016
    Publication date: March 23, 2017
    Inventor: Schickwann Tsai
  • Publication number: 20160109431
    Abstract: The invention relates to natural killer cells and methods for the development of immortalized natural killer cells and use of the natural killer cells. A growth and culture system is described that supports increased natural killer cell development, and provides for the establishment of continuous natural killer cell lines. Additionally, the disclosed method for generating natural killer cells may be used to produce large numbers of natural killer cells for therapeutic applications and for natural killer cell research.
    Type: Application
    Filed: August 24, 2015
    Publication date: April 21, 2016
    Inventor: Schickwann Tsai
  • Patent number: 9121008
    Abstract: The invention relates to natural killer cells and methods for the development of immortalized natural killer cells and use of the natural killer cells. A growth and culture system is described that supports increased natural killer cell development, and provides for the establishment of continuous natural killer cell lines. Additionally, the disclosed method for generating natural killer cells may be used to produce large numbers of natural killer cells for therapeutic applications and for natural killer cell research.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: September 1, 2015
    Assignee: University of Utah Research Foundation
    Inventor: Schickwann Tsai
  • Publication number: 20090264354
    Abstract: The present invention relates to murine and human Penumbra (for proerythroblast nu[new] Membrane) nucleic acid molecules, proteins and the uses thereof. The invention further relates to the use of Penumbra molecules for the detection of 7q31q32-related deletions, including such deletions associated with myeloid malignancies, particularly detection by hybridization using Penumbra-based probes.
    Type: Application
    Filed: September 28, 2006
    Publication date: October 22, 2009
    Applicant: University of Utah Research Foundation
    Inventors: Schickwann Tsai, Zhong Chen
  • Publication number: 20070048290
    Abstract: The invention relates to natural killer cells and methods for the development of immortalized natural killer cells and use of the natural killer cells. A growth and culture system is described that supports increased natural killer cell development, and provides for the establishment of continuous natural killer cell lines. Additionally, the disclosed method for generating natural killer cells may be used to produce large numbers of natural killer cells for therapeutic applications and for natural killer cell research.
    Type: Application
    Filed: August 31, 2005
    Publication date: March 1, 2007
    Inventor: Schickwann Tsai
  • Patent number: 5830760
    Abstract: Methods for establishing continuous SCF dependent lympho-hematopoietic progenitor cell lines capable of differentiating into erythroid, myeloid, and B lymphocytic lineages, and GM-CSF dependent neutrophil progenitor cell lines capable of differentiating into neutrophils but not into monocytes, mast cells, or basophils, by introducing into bone marrow, fetal spleen, fetal liver, or other hematopoietic myeloid cells nucleic acid encoding a dominant negative suppressor of a retinoic acid receptor-alpha and a selectable marker, and culturing the recombinant cells in culture medium containing SCF or GM-CSF, agents allowing for selective growth of the recombinant cells, and a level of retinoic acid of less than about 10.sup.-8 M to about 10.sup.-9 M in the case of establishing neutrophilic progenitor cell lines. Addition of a retinol compound induces the latter cell line to differentiate into neutrophils.
    Type: Grant
    Filed: January 26, 1996
    Date of Patent: November 3, 1998
    Assignee: Fred Hutchinson Cancer Research Center
    Inventors: Schickwann Tsai, Steven J. Collins