Patents by Inventor Scott A. Ecelberger

Scott A. Ecelberger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230245876
    Abstract: Systems and methods to provide rapid and autonomous detection of biological and chemical analyte particles in gas and liquid samples. Systems and methods for capturing and identifying biological and chemical aerosol analyte particles using matrix assisted laser desorption mass spectrometry (MALDI-MS) and using time-of-flight mass spectrometry (TOFMS) are disclosed. High specificity for capture and detection of aerosolized fentanyl was demonstrated using a portable sample capture and analysis system.
    Type: Application
    Filed: April 11, 2023
    Publication date: August 3, 2023
    Applicant: Zeteo Tech, Inc.
    Inventors: Wayne A. BRYDEN, Charles J. CALL, Michael MCLOUGHLIN, Dapeng CHEN, Scott ECELBERGER, Nathaniel K. JONES, Steven STROHL
  • Patent number: 11658021
    Abstract: Disclosed are systems and methods to provide rapid and autonomous detection of analyte particles in gas and liquid samples. Disclosed are methods and devices for identifying biological aerosol analytes using MALDI-MS and chemical aerosol analytes using LDI and MALDI-MS using time-of-flight mass spectrometry (TOFMS).
    Type: Grant
    Filed: August 26, 2020
    Date of Patent: May 23, 2023
    Assignee: Zeteo Tech, Inc.
    Inventors: Wayne A. Bryden, Charles J. Call, Michael McLoughlin, Dapeng Chen, Scott Ecelberger, Nathaniel K. Jones, Steven Strohl, Gary Anderson
  • Publication number: 20230039261
    Abstract: Disclosed are systems and methods to provide rapid and autonomous detection of analyte particles in gas and liquid samples. Disclosed are methods and devices for identifying biological aerosol analytes using MALDI-MS and chemical aerosol analytes using LDI and MALDI-MS using time-of-flight mass spectrometry (TOFMS).
    Type: Application
    Filed: August 26, 2020
    Publication date: February 9, 2023
    Applicant: Zeteo Tech, Inc.
    Inventors: WAYNE A. BRYDEN, Charles J. CALL, Michael MCLOUGHLIN, Dapeng CHEN, Scott ECELBERGER, Nathaniel K. JONES, Steven STROHL, Gary ANDERSON
  • Publication number: 20220044921
    Abstract: Disclosed are systems are methods for identifying the composition of single aerosol particles, particularly that of bioaerosol particles. A continuous timing laser tightly coupled with a pulse ionization laser is used to index aerosol particles, measure particle properties, and trigger the ionization laser to fire when each particle enters the beam of the trigger laser. Ionized fragments and optionally photons produced when each particle is struck by the ionization laser are analyzed using one or more detectors including a TOF-MS detector and an optical detector. Individual single particle spectra are aligned and denoised prior to averaging.
    Type: Application
    Filed: October 21, 2021
    Publication date: February 10, 2022
    Applicant: Zeteo Tech, Inc.
    Inventors: Michael McLoughlin, Ross Kliegman, Tim Cornish, Vadym Berkout, Scott Ecelberger, Gonzalo Arce, Kyle Regan
  • Patent number: 11145500
    Abstract: In one aspect, a time-of-flight mass spectrometer includes a source comprising a backing plate configured to operably couple to a core sample containing component, and an acceleration region. The time-of-flight mass spectrometer also includes a time-of-flight mass analyzer operably associated with the source region. In some embodiments, the core sample core sample containing component is a coring drill bit. In some embodiments, core containing component is configured to couple to the backing plate of the source region from the opposite side of the acceleration region. In some embodiments, core containing component is configured to couple to the backing plate of the source region on the acceleration region side of the backing plate. In some embodiments, the acceleration region is a single-stage acceleration region. In other embodiments, the acceleration region is a two-stage acceleration region.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: October 12, 2021
    Inventors: Timothy Cornish, Scott Ecelberger
  • Publication number: 20190272986
    Abstract: In one aspect, a time-of-flight mass spectrometer includes a source comprising a backing plate configured to operably couple to a core sample containing component, and an acceleration region. The time-of-flight mass spectrometer also includes a time-of-flight mass analyzer operably associated with the source region. In some embodiments, the core sample core sample containing component is a coring drill bit. In some embodiments, core containing component is configured to couple to the backing plate of the source region from the opposite side of the acceleration region. In some embodiments, core containing component is configured to couple to the backing plate of the source region on the acceleration region side of the backing plate. In some embodiments, the acceleration region is a single-stage acceleration region. In other embodiments, the acceleration region is a two-stage acceleration region.
    Type: Application
    Filed: March 4, 2019
    Publication date: September 5, 2019
    Applicant: Zeteo Tech, Inc.
    Inventors: Timothy Cornish, Scott Ecelberger
  • Patent number: 10276360
    Abstract: A miniature time-of-flight mass spectrometer (TOF-MS) was developed for a NASA/ASTID program beginning 2008. The primary targeted application for this technology is the detection of non-volatile (refractory) and biological materials on landed planetary missions. Both atmospheric and airless bodies are potential candidate destinations for the purpose of characterizing mineralogy, and searching for evidence of existing or extant biological activity.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: April 30, 2019
    Assignee: Zeteo Tech, Inc.
    Inventors: Timothy Cornish, Scott Ecelberger
  • Publication number: 20170358439
    Abstract: A miniature time-of-flight mass spectrometer (TOF-MS) was developed for a NASA/ASTID program beginning 2008. The primary targeted application for this technology is the detection of non-volatile (refractory) and biological materials on landed planetary missions. Both atmospheric and airless bodies are potential candidate destinations for the purpose of characterizing mineralogy, and searching for evidence of existing or extant biological activity.
    Type: Application
    Filed: February 27, 2017
    Publication date: December 14, 2017
    Applicant: C&E RESEARCH, INC.
    Inventors: Timothy Cornish, Scott Ecelberger
  • Patent number: 9583327
    Abstract: A miniature time-of-flight mass spectrometer (TOF-MS) was developed for a NASA/ASTID program beginning 2008. The primary targeted application for this technology is the detection of non-volatile (refractory) and biological materials on landed planetary missions. Both atmospheric and airless bodies are potential candidate destinations for the purpose of characterizing mineralogy, and searching for evidence of existing or extant biological activity.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: February 28, 2017
    Assignee: C&E Research, Inc.
    Inventors: Timothy Cornish, Scott Ecelberger
  • Publication number: 20150155154
    Abstract: A miniature time-of-flight mass spectrometer (TOF-MS) was developed for a NASA/ASTID program beginning 2008. The primary targeted application for this technology is the detection of non-volatile (refractory) and biological materials on landed planetary missions. Both atmospheric and airless bodies are potential candidate destinations for the purpose of characterizing mineralogy, and searching for evidence of existing or extant biological activity.
    Type: Application
    Filed: June 12, 2013
    Publication date: June 4, 2015
    Inventors: Timothy Cornish, Scott Ecelberger
  • Patent number: 7271397
    Abstract: A mass spectrometer is provided herein and is configured to have two ionization sources, in which a first ionization source, such as MALDI, ESI and the like, which is capable of providing in addition to ions a set of normally intractable desorbed neutrals that are ionized by a second EI source coupled with the first source.
    Type: Grant
    Filed: July 17, 2003
    Date of Patent: September 18, 2007
    Assignee: The Johns Hopkins University
    Inventors: Wayne A. Bryden, Robert J. Cotter, Scott A. Ecelberger
  • Publication number: 20050258356
    Abstract: The present invention is directed to a bipolar ion detector capable of detecting both positive and negative ions in a single configuration. The invention uses either a single microchannel plates or a stack of microchannel plates to convert the ion signal into an amplified electron signal. Circuitry allows the anode to be biased (floated) to a positive high voltage and efficiently couple the signal from the anode out to recording electronics at ground.
    Type: Application
    Filed: May 19, 2005
    Publication date: November 24, 2005
    Inventors: Scott Ecelberger, Douglas Lewis, Keith Soldavin
  • Publication number: 20050247871
    Abstract: A mass spectrometer is provided herein and is configured to have two ionization sources, in which a first ionization source, such as MALDI, ESI and the like, which is capable of providing in addition to ions a set of normally intractable desorbed neutrals that are ionized by a second EI source coupled with the first source.
    Type: Application
    Filed: July 17, 2003
    Publication date: November 10, 2005
    Inventors: Wayne Bryden, Robert Cotter, Scott Ecelberger
  • Patent number: 6943344
    Abstract: A method is provided for reducing signal ringing in a microchannel plate detector assembly having a cylindrical mount with a center tube extending through at least a portion of the assembly, in a mass spectrometer including the steps of providing the microchannel plate detector assembly with a pin anode extending from the cylindrical mount and located in proximity to the center tube; holding a front portion of the assembly at ground potential; setting a middle portion of the assembly between the front portion and a rear portion to a first voltage potential for accelerating ions; holding the rear portion of the assembly to a second voltage potential; holding the pin anode at a third voltage potential; and accelerating electrons emitted from the middle portion of the assembly toward the pin anode. The third voltage potential is established by an amplifier of an oscilloscope connected to the detector assembly.
    Type: Grant
    Filed: May 23, 2001
    Date of Patent: September 13, 2005
    Assignee: The Johns Hopkins University
    Inventors: Timothy J. Cornish, Scott A. Ecelberger
  • Patent number: 6844544
    Abstract: Techniques for simultaneously detecting direct and reflected ions in a time-of-flight tube (120) and a source (110) for generating an ion beam of ions of a sample and introducing the ion beam into a first portion of the flight tube. A reflector (126) reflects ions from the ion beam in a second portion of the flight tube. A plate (140) substantially perpendicular to an axis of the ion beam is located between the first portion of the flight tube and the second portion of the flight tube. The plate has a hole through which some ions in the ion beam may pass from the first portion to the second portion of the flight tube. Each of two opposite faces of the plate includes a set of one or more ion detectors (140). The technique allows rapid, reliable detection of complex agents in a small number of samples.
    Type: Grant
    Filed: September 20, 2002
    Date of Patent: January 18, 2005
    Assignee: The Johns Hopkins University
    Inventors: Timothy J. Cornish, Scott A. Ecelberger
  • Patent number: 6841773
    Abstract: A field portable mass spectrometer system comprising a sample collector and a sample transporter. The sample transporter interfaces with the sample collector to receive sample deposits thereon. The system further comprises a time of flight (TOF) mass spectrometer. The time of flight mass spectrometer has a sealable opening that receives the sample transported via the sample transporter in an extraction region of the mass spectrometer. The system further comprises a control unit that processes a time series output by the mass spectrometer for a received sample and identifies one or more agents contained in the sample.
    Type: Grant
    Filed: May 23, 2001
    Date of Patent: January 11, 2005
    Assignee: The Johns Hopkins University
    Inventors: Michael P. McLoughlin, William R. Allmon, Charles W. Anderson, Micah A. Carlson, Nicholas H. Evancich, Wayne A. Bryden, Scott A. Ecelberger, James T. Velky, Daniel J. DeCicco, Timothy J. Cornish
  • Publication number: 20040222372
    Abstract: A field portable mass spectrometer system comprising a sample collector and a sample transporter. The sample transporter interfaces with the sample collector to receive sample deposits thereon. The system further comprises a time of flight (TOF) mass spectrometer. The time of flight mass spectrometer has a sealable opening that receives the sample transported via the sample transporter in an extraction region of the mass spectrometer. The system further comprises a control unit that processes a time series output by the mass spectrometer for a received sample and identifies one or more agents contained in the sample.
    Type: Application
    Filed: February 27, 2002
    Publication date: November 11, 2004
    Inventors: Michael P. McLoughlin, William R. Allmon, Charles W. Anderson, Micah A. Carlson, Nicholas H. Evancich, Wayne A. Bryden, Scott A. Ecelberger, James T. Velky, Daniel J. DeCicco, Timothy J. Cornish
  • Publication number: 20040206900
    Abstract: Techniques for simultaneously detecting direct and reflected ions in a time-of-flight tube (120) and a source (110) for generating an ion beam of ions of a sample and introducing the ion beam into a first portion of the flight tube. A reflector (126) reflects ions from the ion beam in a second portion of the flight tube. A plate (140) substantially perpendicular to an axis of the ion beam is located between the first portion of the flight tube and the second portion of the flight tube. The plate has a hole through which some ions in the ion beam may pass from the first portion to the second portion of the flight tube. Each of two opposite faces of the plate includes a set of one or more ion detectors (140). The technique allows rapid, reliable detection of complex agents in a small number of samples.
    Type: Application
    Filed: December 9, 2003
    Publication date: October 21, 2004
    Inventors: Timothy J Cornish, Scott A Ecelberger
  • Patent number: 6806465
    Abstract: A field portable mass spectrometer system comprising a sample collector and a sample transporter. The sample transporter interfaces with the sample collector to receive sample deposits thereon. The system further comprises a time of flight (TOF) mass spectrometer. The time of flight mass spectrometer has a sealable opening that receives the sample transported via the sample transporter in an extraction region of the mass spectrometer. The system further comprises a control unit that processes a time series output by the mass spectrometer for a received sample and identifies one or more agents contained in the sample.
    Type: Grant
    Filed: January 15, 2002
    Date of Patent: October 19, 2004
    Assignee: The Johns Hopkins University
    Inventors: Charles W. Anderson, Peter F. Scholl, Ronald G. Chappell, Wayne A. Bryden, Harvey W. Ko, Scott A. Ecelberger
  • Patent number: 6580070
    Abstract: A time-of-flight mass spectrometer (TOF-MS) array instrument is provided. Each TOF-MS of the array instrument includes (1) a gridless, focusing ionization extraction device allowing for the use of very high extraction energies in a maintenance-free design, (2) a fiberglass-clad flexible circuit-board reflector using rolled flexible circuit-board material, and (3) a low-noise, center-hole microchannel plate detector assembly that significantly reduces the noise (or “ringing”) inherent in the coaxial design. The miniature TOF-MS array allows for the bundling of a plurality of mass analyzers, e.g., a plurality of TOF-MSs, into a single array working in parallel fashion to greatly enhance the throughput of each TOF-MS in the array by multiplexing the data collection process. A preferred embodiment of the TOF-MS array instrument incorporates 16 TOF-MS units that are arranged in mirror-image clusters of eight units.
    Type: Grant
    Filed: January 8, 2002
    Date of Patent: June 17, 2003
    Assignee: The Johns Hopkins University
    Inventors: Timothy J. Cornish, Scott A. Ecelberger