Patents by Inventor Scott A. Harrington

Scott A. Harrington has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180160994
    Abstract: An apparatus for creating a radiation treatment plan for execution by a radiation treatment machine, includes: a waypoint module configured to obtain imaging waypoint data representing imaging waypoints, the imaging waypoints at least partially defining one or more positions for obtaining images of a patient during a treatment session; a treatment trajectory module configured to obtain treatment data at least partially defining a beam-on direction; a treatment plan generator configured to create the radiation treatment plan based at least in part on the imaging waypoint data and the treatment data.
    Type: Application
    Filed: December 14, 2016
    Publication date: June 14, 2018
    Inventors: Adam Scott HARRINGTON, William KEARNS, Joakim PYYRY, Janne I. NORD, Agam SHARDA
  • Patent number: 9947812
    Abstract: Approaches for the metallization of solar cells and the resulting solar cells are described. In an example, a method of fabricating a solar cell involves forming a plurality of alternating N-type and P-type regions in or above a substrate. The method also involves forming a metal seed layer on the plurality of alternating N-type and P-type regions. The method also involves patterning at least a portion of the metal seed layer at regions in alignment with locations between the alternating N-type and P-type regions. The method also involves, subsequent to the patterning, etching to form trenches at the locations between the alternating N-type and P-type regions, isolating the alternating N-type and P-type regions from one another.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: April 17, 2018
    Assignee: SunPower Corporation
    Inventors: Gabriel Harley, Scott Harrington, David D. Smith
  • Publication number: 20180092668
    Abstract: The present teachings provide one or more surgical implements for repairing damaged tissue, such as in the case of a spinal fixation procedure. A cross connector system for use during a spinal fixation procedure is provided. The system includes at least one bridge defining a coupling bore and having a pair of downwardly extending arms for coupling to a first bone engaging member. The system includes a contoured bar having a first end offset from a second end, and a bore having a central axis. The system includes an expansion ring received within the bore, and a locking device received through the expansion ring and the coupling bore. The locking device is operable in a first state in which the contoured bar is movable about the central axis of the bore and in a second state in which the contoured bar fixed relative to the central axis of the bore.
    Type: Application
    Filed: December 5, 2017
    Publication date: April 5, 2018
    Inventors: Matthew L. Keiser, Laurie G. Sanders, Scott Harrington
  • Publication number: 20180021049
    Abstract: An adjustable drill depth guide includes a first sleeve, a second sleeve and a stop member. The first sleeve includes a longitudinal axis and defines a helical slot disposed about the longitudinal axis. The second sleeve is concentrically arranged relative to the first sleeve and is axially adjustable relative to the first sleeve for adjusting a length of the adjustable drill depth guide. The stop member extends radially from the second sleeve and is disposed in the helical slot. The stop member is selectively received at various positions along the helical slot to positively locate the second sleeve relative to the first sleeve in the axial direction.
    Type: Application
    Filed: September 29, 2017
    Publication date: January 25, 2018
    Inventors: Matthew L. Keiser, Scott Harrington
  • Patent number: 9855079
    Abstract: The present teachings provide one or more surgical implements for repairing damaged tissue, such as in the case of a spinal fixation procedure. A cross connector system for use during a spinal fixation procedure is provided. The system includes at least one bridge defining a coupling bore and having a pair of downwardly extending arms for coupling to a first bone engaging member. The system includes a contoured bar having a first end offset from a second end, and a bore having a central axis. The system includes an expansion ring received within the bore, and a locking device received through the expansion ring and the coupling bore. The locking device is operable in a first state in which the contoured bar is movable about the central axis of the bore and in a second state in which the contoured bar fixed relative to the central axis of the bore.
    Type: Grant
    Filed: April 16, 2014
    Date of Patent: January 2, 2018
    Assignee: EBI, LLC
    Inventors: Matthew L. Keiser, Laurie G. Sanders, Scott Harrington
  • Patent number: 9837259
    Abstract: A method of processing a silicon substrate can include etching the silicon substrate with a first etchant having a first concentration and etching with a second etchant having a second concentration. In an embodiment, the second concentration of the second etchant can be greater than the first concentration of the first etchant. In one embodiment, the first etchant can be a different type of etchant than the second etchant. In an embodiment, the first and second etchant can be the same type of etchant. In some embodiments the silicon substrate can be cleaned with a first cleaning solution to remove contaminants from the silicon substrate prior to etching with the first etchant. In an embodiment, the silicon substrate can be cleaned with a second cleaning solution after etching the silicon substrate with a second etchant.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: December 5, 2017
    Assignees: SunPower Corporation, Total Marketing Services
    Inventors: Scott Harrington, Venkatasubramani Balu, Amada Lorena Montesdeoca Santana
  • Patent number: 9801641
    Abstract: An adjustable drill depth guide includes a first sleeve, a second sleeve and a stop member. The first sleeve includes a longitudinal axis and defines a helical slot disposed about the longitudinal axis. The second sleeve is concentrically arranged relative to the first sleeve and is axially adjustable relative to the first sleeve for adjusting a length of the adjustable drill depth guide. The stop member extends radially from the second sleeve and is disposed in the helical slot. The stop member is selectively received at various positions along the helical slot to positively locate the second sleeve relative to the first sleeve in the axial direction.
    Type: Grant
    Filed: November 22, 2013
    Date of Patent: October 31, 2017
    Assignee: EBI, LLC
    Inventors: Matthew L. Keiser, Scott Harrington
  • Publication number: 20170288074
    Abstract: Methods of fabricating solar cell emitter regions with differentiated P-type and N-type regions architectures, and resulting solar cells, are described. In an example, a back contact solar cell can include a substrate having a light-receiving surface and a back surface. A first polycrystalline silicon emitter region of a first conductivity type is disposed on a first thin dielectric layer disposed on the back surface of the substrate. A second polycrystalline silicon emitter region of a second, different, conductivity type is disposed on a second thin dielectric layer disposed on the back surface of the substrate. A third thin dielectric layer is disposed over an exposed outer portion of the first polycrystalline silicon emitter region and is disposed laterally directly between the first and second polycrystalline silicon emitter regions. A first conductive contact structure is disposed on the first polycrystalline silicon emitter region.
    Type: Application
    Filed: October 26, 2016
    Publication date: October 5, 2017
    Inventors: David D. Smith, Timothy Weidman, Scott Harrington, Venkatasubramani Balu
  • Publication number: 20170020394
    Abstract: A mechanically and/or magnetically navigable catheter has an elongate body having a proximal and a distal end. At least one mechanically or magnetically responsive element is associated with the distal end of the elongate body for navigating the distal end in the body. At least one fiber optic sensor extends substantially along the length of the elongate body for use determining the location of at least one point along the length of the elongate body, which can be used as an input an automated navigation system.
    Type: Application
    Filed: July 1, 2016
    Publication date: January 26, 2017
    Inventor: Scott Harrington
  • Patent number: 9537030
    Abstract: Methods of fabricating solar cells with tunnel dielectric layers are described. Solar cells with tunnel dielectric layers are also described.
    Type: Grant
    Filed: May 29, 2015
    Date of Patent: January 3, 2017
    Assignee: SunPower Corporation
    Inventors: Tim Dennis, Scott Harrington, Jane Manning, David D. Smith, Ann Waldhauer
  • Patent number: 9502601
    Abstract: Methods of fabricating solar cell emitter regions with differentiated P-type and N-type regions architectures, and resulting solar cells, are described. In an example, a back contact solar cell can include a substrate having a light-receiving surface and a back surface. A first polycrystalline silicon emitter region of a first conductivity type is disposed on a first thin dielectric layer disposed on the back surface of the substrate. A second polycrystalline silicon emitter region of a second, different, conductivity type is disposed on a second thin dielectric layer disposed on the back surface of the substrate. A third thin dielectric layer is disposed over an exposed outer portion of the first polycrystalline silicon emitter region and is disposed laterally directly between the first and second polycrystalline silicon emitter regions. A first conductive contact structure is disposed on the first polycrystalline silicon emitter region.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: November 22, 2016
    Assignee: SunPower Corporation
    Inventors: David D. Smith, Timothy Weidman, Scott Harrington, Venkatasubramani Balu
  • Patent number: 9437757
    Abstract: A method of fabricating a solar cell is disclosed. The method includes forming a polished surface on a silicon substrate and forming a first flowable matrix in an interdigitated pattern on the polished surface, where the polished surface allows the first flowable matrix to form an interdigitated pattern comprising features of uniform thickness and width. In an embodiment, the method includes forming the silicon substrate using a method such as, but not limited to, of diamond wire or slurry wafering processes. In another embodiment, the method includes forming the polished surface on the silicon substrate using a chemical etchant such as, but not limited to, sulfuric acid (H2SO4), acetic acid (CH3COOH), nitric acid (HNO3), hydrofluoric acid (HF) or phosphoric acid (H3PO4). In still another embodiment, the etchant is an isotropic etchant. In yet another embodiment, the method includes providing a surface of the silicon substrate with at most 500 nanometer peak-to-valley roughness.
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: September 6, 2016
    Assignee: SunPower Corporation
    Inventors: Genevieve A. Solomon, Scott Harrington, Kahn Wu, Paul Loscutoff, Junbo Wu, Steven Edward Molesa
  • Patent number: 9419166
    Abstract: A method of fabricating a solar cell can include forming a first dopant region over a silicon substrate and an oxide region over the first dopant region. In an embodiment, the oxide region can protect the first dopant region from a first etching process. In an embodiment, a second dopant region can be formed over the silicon substrate, where a mask can be formed to protect a first portion of the second dopant region from the first etching process. In an embodiment, the first etching process can be performed to expose portions of the silicon substrate and/or a silicon region. A second etching process can be performed to form a trench region to separate a first and second doped region of the solar cell. A third etching process can be performed to remove contaminants from the solar cell and remove any remaining portions of the oxide region.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: August 16, 2016
    Assignee: SunPower Corporation
    Inventors: Scott Harrington, Venkatasubramani Balu, Westerberg Staffan, Peter John Cousins
  • Publication number: 20160111583
    Abstract: A method of fabricating a solar cell can include forming a first dopant region over a silicon substrate and an oxide region over the first dopant region. In an embodiment, the oxide region can protect the first dopant region from a first etching process. In an embodiment, a second dopant region can be formed over the silicon substrate, where a mask can be formed to protect a first portion of the second dopant region from the first etching process. In an embodiment, the first etching process can be performed to expose portions of the silicon substrate and/or a silicon region. A second etching process can be performed to form a trench region to separate a first and second doped region of the solar cell. A third etching process can be performed to remove contaminants from the solar cell and remove any remaining portions of the oxide region.
    Type: Application
    Filed: December 18, 2015
    Publication date: April 21, 2016
    Inventors: Scott Harrington, Venkatasubramani Balu, Westerberg Staffan, Peter John Cousins
  • Publication number: 20160064207
    Abstract: A method of processing a silicon substrate can include etching the silicon substrate with a first etchant having a first concentration and etching with a second etchant having a second concentration. In an embodiment, the second concentration of the second etchant can be greater than the first concentration of the first etchant. In one embodiment, the first etchant can be a different type of etchant than the second etchant. In an embodiment, the first and second etchant can be the same type of etchant. In some embodiments the silicon substrate can be cleaned with a first cleaning solution to remove contaminants from the silicon substrate prior to etching with the first etchant. In an embodiment, the silicon substrate can be cleaned with a second cleaning solution after etching the silicon substrate with a second etchant.
    Type: Application
    Filed: August 29, 2014
    Publication date: March 3, 2016
    Inventors: Scott Harrington, Balu Venkatasubramani, Amada Lorena Montesdeoca Santana
  • Patent number: 9246046
    Abstract: A method of fabricating a solar cell can include forming a first dopant region over a silicon substrate and an oxide region over the first dopant region. In an embodiment, the oxide region can protect the first dopant region from a first etching process. In an embodiment, a second dopant region can be formed over the silicon substrate, where a mask can be formed to protect a first portion of the second dopant region from the first etching process. In an embodiment, the first etching process can be performed to expose portions of the silicon substrate and/or a silicon region. A second etching process can be performed to form a trench region to separate a first and second doped region of the solar cell. A third etching process can be performed to remove contaminants from the solar cell and remove any remaining portions of the oxide region.
    Type: Grant
    Filed: September 26, 2014
    Date of Patent: January 26, 2016
    Assignee: SunPower Corporation
    Inventors: Scott Harrington, Venkatasubramani Balu, Staffan Westerberg, Peter John Cousins
  • Publication number: 20150364625
    Abstract: A method of fabricating a solar cell is disclosed. The method includes forming a polished surface on a silicon substrate and forming a first flowable matrix in an interdigitated pattern on the polished surface, where the polished surface allows the first flowable matrix to form an interdigitated pattern comprising features of uniform thickness and width. In an embodiment, the method includes forming the silicon substrate using a method such as, but not limited to, of diamond wire or slurry wafering processes. In another embodiment, the method includes forming the polished surface on the silicon substrate using a chemical etchant such as, but not limited to, sulfuric acid (H2SO4), acetic acid (CH3COOH), nitric acid (HNO3), hydrofluoric acid (HF) or phosphoric acid (H3PO4). In still another embodiment, the etchant is an isotropic etchant. In yet another embodiment, the method includes providing a surface of the silicon substrate with at most 500 nanometer peak-to-valley roughness.
    Type: Application
    Filed: June 19, 2015
    Publication date: December 17, 2015
    Inventors: Genevieve A. Solomon, Scott Harrington, Kahn Wu, Paul Loscutoff, Junbo Wu, Steven Edward Molesa
  • Patent number: 9173748
    Abstract: An intervertebral implant for insertion between adjacent vertebral bodies is provided. The intervertebral implant can include a first component. The first component can have a first articulating surface, which can be generally convex. The intervertebral implant can include a second component, which can be generally in the shape of a toroid. The second component can have a second articulating surface. The second articulating surface can be generally concave and articulable with the first articulating surface for retaining motion between the first and second vertebra. The second articulating surface can have a larger radius of curvature than the first articulating surface such that a portion of the first articulating surface extends into an aperture defined by the generally toroid shape.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: November 3, 2015
    Assignee: EBI, LLC
    Inventors: Stephen D. Cook, Scott Harrington
  • Publication number: 20150285909
    Abstract: A sonar mapping system that includes a sonar transducer assembly configured for mounting on a watercraft, and a display configured to show a topographical chart of a body of water. The sonar mapping system further includes a processor coupled to the sonar transducer assembly and display. The processor is configured to create the topographical chart in real time, and to update the topographical chart in real time, based on sonar data provided by the sonar transducer assembly. The processor is also configured to render the created or updated topographical chart on the display. The sonar mapping system has memory accessible by the processor and configured to store the topographical chart rendered by the processor, and to store the sonar data provided by the sonar transducer assembly.
    Type: Application
    Filed: April 2, 2015
    Publication date: October 8, 2015
    Applicant: JOHNSON OUTDOORS INC.
    Inventors: Per Pelin, Scott A. Harrington
  • Publication number: 20150280029
    Abstract: Approaches for the metallization of solar cells and the resulting solar cells are described. In an example, a method of fabricating a solar cell involves forming a plurality of alternating N-type and P-type regions in or above a substrate. The method also involves forming a metal seed layer on the plurality of alternating N-type and P-type regions. The method also involves patterning at least a portion of the metal seed layer at regions in alignment with locations between the alternating N-type and P-type regions. The method also involves, subsequent to the patterning, etching to form trenches at the locations between the alternating N-type and P-type regions, isolating the alternating N-type and P-type regions from one another.
    Type: Application
    Filed: March 28, 2014
    Publication date: October 1, 2015
    Inventors: Gabriel Harley, Scott Harrington, David D. Smith