Patents by Inventor Scott Allan Miller

Scott Allan Miller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120095528
    Abstract: An interface relay system for use with a fully implantable medical devices that permits transcutaneous coupling of the implanted medical device to a consumer electronics device. In one embodiment, coupling the implanted medical device to the external electronics device provides a back-up source of power for operating the implanted medical device. In another embodiment, coupling the implanted medical device to the external electronics device allows for providing unidirectional and/or bidirectional data transfer between the devices. In one arrangement, the consumer electronics device may be connectable to a communications/data network to allow for network communication between the implantable medical device and a remote processing platform/server.
    Type: Application
    Filed: October 19, 2011
    Publication date: April 19, 2012
    Inventors: Scott Allan Miller, III, Denis Dupeyron
  • Patent number: 8096937
    Abstract: The invention is directed to an implanted microphone having reduced sensitivity to vibration. In this regard, the microphone differentiates between the desirable and undesirable vibration by utilizing at least one motion sensor to produce a motion signal when an implanted microphone is in motion. This motion signal is used to yield a microphone output signal that is less vibration sensitive. In a first arrangement, the motion signal may be processed with an output of the implantable microphone transducer to provide an audio signal that is less vibration-sensitive than the microphone output alone. Specifically, the motion signal may be scaled to match the motion component of the microphone output such that upon removal of the motion signal from the microphone output, the remaining signal is an acoustic signal.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: January 17, 2012
    Assignee: Otologics, LLC
    Inventor: Scott Allan Miller, III
  • Publication number: 20110243350
    Abstract: An electret microphone having reduced noise due to reduced leakage current is provided. The microphone includes a flexible diaphragm, and sensor member disposed in opposing, spaced relation to the diaphragm and comprising a semi-conductor channel. At least one electret surface, comprised of a dielectric material having a permanently-embedded static electric charge, is disposed on one of the diaphragm and the sensor member. In turn, the semi-conductor channel of the sensor member has an electrical conductivity dependent upon relative movement of the diaphragm and support member responsive to acoustic signals incident upon the diaphragm, wherein the channel provides an output signal indicative of the acoustic signals. The electret surface may be disposed on the diaphragm. Alternatively, the electret surface may be disposed on the sensor member in spaced, face-to-face relation to an electrically conductive surface located on the diaphragm.
    Type: Application
    Filed: March 30, 2011
    Publication date: October 6, 2011
    Applicant: Otologics, LLC
    Inventors: Scott Allan Miller, Denis Dupeyron
  • Publication number: 20110200222
    Abstract: An implantable microphone is disclosed having an external diaphragm and housing that forming chamber capable of being pressurized by deformational movement of the diaphragm induced by pressure waves (e.g., acoustic signals) propagating through overlying tissue. The chamber is shaped such that the volume of the chamber upon deflection of the diaphragm is reduced compared to a static volume of the chamber (i.e., volume of the chamber with no diaphragm deflection). As a result, the change in pressure within the chamber for a given diaphragm displacement is greater than it would be within a chamber having a cylindrical volume, leading to greater microphone sensitivity. In one arrangement, the chamber is shaped such that it is deeper at its center than at its edges, for example, to form a conical or paraboloidal volume.
    Type: Application
    Filed: February 18, 2011
    Publication date: August 18, 2011
    Applicant: Otologics, LLC
    Inventors: Scott Allan Miller, III, Robert Edwin Schneider
  • Patent number: 7905824
    Abstract: A hearing aid transducer that includes an actuator advanceable relative to the transducer to couple with a middle ear component. In one aspect of the invention, the actuator is a separate structure from the transducer that is insertable into an aperture defined between a first and second end of the transducer. This permits separate connection of the actuator to the middle ear component and the transducer to improve coupling of the transducer to the middle ear component, e.g., minimizing loads on the middle ear component.
    Type: Grant
    Filed: October 8, 2007
    Date of Patent: March 15, 2011
    Assignee: Otologics, LLC
    Inventors: Robert Edwin Schneider, Scott Allan Miller, III, James Frank Kasic, II
  • Patent number: 7903836
    Abstract: An implantable microphone is disclosed having an external diaphragm and housing that forming chamber capable of being pressurized by deformational movement of the diaphragm induced by pressure waves (e.g., acoustic signals) propagating through overlying tissue. The chamber is shaped such that the volume of the chamber upon deflection of the diaphragm is reduced compared to a static volume of the chamber (i.e., volume of the chamber with no diaphragm deflection). As a result, the change in pressure within the chamber for a given diaphragm displacement is greater than it would be within a chamber having a cylindrical volume, leading to greater microphone sensitivity. In one arrangement, the chamber is shaped such that it is deeper at its center than at its edges, for example, to form a conical or paraboloidal volume.
    Type: Grant
    Filed: February 10, 2009
    Date of Patent: March 8, 2011
    Assignee: Otologics, LLC
    Inventors: Scott Allan Miller, III, Robert Edwin Schneider
  • Patent number: 7840020
    Abstract: An implanted microphone is provided that has reduced sensitivity to vibration and attendant acceleration forces to differentiate between desirable and undesirable components of a transcutaneously received signal. More specifically, the microphone utilizes an output that is indicative of acceleration forces acting on the implanted microphone to counteract and/or cancel the effects of acceleration-induced pressures in an output signal of a microphone diaphragm. In one arrangement, a microphone having two diaphragms pneumatically cancels acceleration pressures. In this arrangement, a first diaphragm receives and generates a response to commingled acoustic and acceleration forces and a second diaphragm is substantially isolated from the acoustic forces. That is, the second diaphragm generates a response to acceleration forces. The displacements of the first and second diaphragms are pneumatically combined.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: November 23, 2010
    Assignee: Otologics, LLC
    Inventors: Scott Allan Miller, III, Robert Edwin Schneider, David L. Basinger, Travis Rian Andrews
  • Publication number: 20100272287
    Abstract: An implantable microphone that includes a hermetically-sealed, enclosed volume and an electret member and back plate disposed with a space therebetween and capacitively coupleable to provide an output signal indicative of acoustic signals incident upon at least one of the electret member and back plate. At least one of the electret member and the back plate may include a plurality of laterally offset portions located in corresponding spatial relation to a plurality of laterally offset regions including the lateral extent of the space. The output signal may be at least one of weighted and weightable in relation to the plurality of laterally offset portions. The electret member may include the plurality of laterally offset portions, and the laterally offset portions may include at least one positively charged dielectric material portion and at least one negatively charged dielectric material portion.
    Type: Application
    Filed: April 27, 2010
    Publication date: October 28, 2010
    Applicant: Otologics, LLC
    Inventor: Scott Allan Miller, III
  • Patent number: 7775964
    Abstract: The invention is directed to an implanted microphone having reduced sensitivity to vibration. In this regard, the microphone differentiates between the desirable and undesirable vibration by utilizing at least one motion sensor to produce a motion signal when an implanted microphone is in motion. This motion signal is used to yield a microphone output signal that is less vibration sensitive. In a first arrangement, the motion signal may be processed with an output of the implantable microphone transducer to provide an audio signal that is less vibration-sensitive than the microphone output alone. Specifically, the motion signal may be scaled to match the motion component of the microphone output such that upon removal of the motion signal from the microphone output, the remaining signal is an acoustic signal.
    Type: Grant
    Filed: January 11, 2006
    Date of Patent: August 17, 2010
    Assignee: Otologics LLC
    Inventor: Scott Allan Miller, III
  • Publication number: 20100076520
    Abstract: An implantable device such as a microphone that may be subcutaneously positioned in surrounding soft tissue. The implantable device may include a hermetically-sealed housing and a diaphragm that forms a portion of an outside surface of the housing. The microphone has a density that is no more than 110% of a density of the surrounding soft tissue. In one arrangement, the device may move in at least substantial unison with the surrounding soft tissue in response to a pressure or compression wave propagating through the soft tissue and being received at the device. In another arrangement, the device may include a filler that may be operable to alter the density of the device.
    Type: Application
    Filed: September 23, 2009
    Publication date: March 25, 2010
    Applicant: Otologics, LLC
    Inventor: Scott Allan Miller, III
  • Publication number: 20100042119
    Abstract: A system for reducing subcutaneous migration of an implantable device or housing relative to surrounding soft tissue. For instance, the implantable housing may support a microphone diaphragm. The system includes at least one securement member having at least one aperture extending therethrough that may selectively receive one of a soft tissue securement device (e.g., soft tissue suture) and soft tissue growth therethrough. The securement member is at least one of interconnected to and disposable over at least a portion of the housing and at least one of extends away from and is selectively extendable away from a periphery of the housing. In one arrangement, at least one mesh member may be optionally included with the system that may allow for tissue growth to enhance securement of the implanted device relative to the soft tissue.
    Type: Application
    Filed: August 10, 2009
    Publication date: February 18, 2010
    Applicant: Otologics, LLC
    Inventors: William J. Simms, Scott Allan Miller, III, Nicholas Pergola, Brian M. Conn, James R. Easter
  • Patent number: 7556597
    Abstract: The invention is directed to an implanted microphone having reduced sensitivity to vibration. In this regard, the microphone differentiates between the desirable and undesirable vibration by utilizing at least one motion sensor to produce a motion signal when an implanted microphone is in motion. This motion signal is used to yield a microphone output signal that is less vibration sensitive. In a first arrangement, the motion signal may be processed with an output of the implantable microphone transducer to provide an audio signal that is less vibration-sensitive than the microphone output alone. In another arrangement, the motion signal may be utilized to actuate at least one actuator. Such an actuator may be capable of applying a force to move the implantable microphone or an implant capsule so as to reduce movement of a microphone diaphragm relative to the skin of a patient which covers the microphone diaphragm.
    Type: Grant
    Filed: November 5, 2004
    Date of Patent: July 7, 2009
    Assignee: Otologics, LLC
    Inventors: Scott Allan Miller, III, Bernd Waldmann, David L. Basinger
  • Publication number: 20090163978
    Abstract: An implantable microphone comprises a hermetically-sealed, enclosed volume and an electret member and back plate disposed with a space therebetween and capacitively coupleable to provide an output signal indicative of acoustic signals incident upon at least one of the electret member and back plate. The back plate may be disposed to define a peripheral portion of the enclosed volume, e.g., the back plate may be defined as part of a flexible diaphragm that receives external acoustic signals. Vents may be provided to fluidly interconnect first and second portions of the enclosed volume that are located on first and second sides of the electret member. In another embodiment, the electret member may be flexible and spaced relative to a flexible outer diaphragm.
    Type: Application
    Filed: November 20, 2008
    Publication date: June 25, 2009
    Applicant: Otologics, LLC
    Inventors: Scott Allan Miller, III, Travis Rian Andrews, Robert Edwin Schneider, David L. Basinger, James R. Easter
  • Publication number: 20090141922
    Abstract: An implantable microphone is disclosed having an external diaphragm and housing that forming chamber capable of being pressurized by deformational movement of the diaphragm induced by pressure waves (e.g., acoustic signals) propagating through overlying tissue. The chamber is shaped such that the volume of the chamber upon deflection of the diaphragm is reduced compared to a static volume of the chamber (i.e., volume of the chamber with no diaphragm deflection). As a result, the change in pressure within the chamber for a given diaphragm displacement is greater than it would be within a chamber having a cylindrical volume, leading to greater microphone sensitivity. In one arrangement, the chamber is shaped such that it is deeper at its center than at its edges, for example, to form a conical or paraboloidal volume.
    Type: Application
    Filed: February 10, 2009
    Publication date: June 4, 2009
    Inventors: Scott Allan Miller, III, Robert Edwin Schneider
  • Publication number: 20090112051
    Abstract: Provided is an implanted hearing instrument having reduced sensitivity to vibration. In this regard, the instrument differentiates between the desirable and undesirable signals within an implanted microphone response. In one arrangement, an observer identifies a current operating state of the implanted hearing instrument and one or more cancellation filters are adjusted based on the current operating state. The cancellation filter(s) are used to reduce undesired signals form the implanted microphone response. In a first arrangement, the output of the implanted hearing instrument may be filtered and removed from the implanted microphone response to reduce or substantially eliminate feedback in the microphone signal provided to an implanted signal processor.
    Type: Application
    Filed: October 30, 2007
    Publication date: April 30, 2009
    Inventor: Scott Allan Miller, III
  • Patent number: 7522738
    Abstract: The invention is directed to an implanted microphone having reduced sensitivity to vibration. In this regard, the microphone differentiates between the desirable and undesirable vibration by utilizing at least one motion sensor to produce a motion signal when an implanted microphone is in motion. This motion signal is used to yield a microphone output signal that is less vibration sensitive. In a first arrangement, the motion signal may be processed with an output of the implantable microphone transducer to provide an audio signal that is less vibration-sensitive than the microphone output alone. Specifically, the motion signal may be scaled to match the motion component of the microphone output such that upon removal of the motion signal from the microphone output, the remaining signal is an acoustic signal.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: April 21, 2009
    Assignee: Otologics, LLC
    Inventor: Scott Allan Miller, III
  • Patent number: 7489793
    Abstract: An implantable microphone is disclosed having an external diaphragm and housing that forming chamber capable of being pressurized by deformational movement of the diaphragm induced by pressure waves (e.g., acoustic signals) propagating through overlying tissue. The chamber is shaped such that the volume of the chamber upon deflection of the diaphragm is reduced compared to a static volume of the chamber (i.e., volume of the chamber with no diaphragm deflection). As a result, the change in pressure within the chamber for a given diaphragm displacement is greater than it would be within a chamber having a cylindrical volume, leading to greater microphone sensitivity. In one arrangement, the chamber is shaped such that it is deeper at its center than at its edges, for example, to form a conical or paraboloidal volume.
    Type: Grant
    Filed: January 20, 2006
    Date of Patent: February 10, 2009
    Assignee: Otologics, LLC
    Inventors: Scott Allan Miller, III, Robert Edwin Schneider
  • Patent number: 7468028
    Abstract: A variable reluctance motor is provided having a linear relationship between an input current and an output force. According to one aspect of the invention, the motor comprises a stator, an armature, and at least one magnetic member to provide a biasing force on the armature. According to this characterization, the motor also includes a drive coil to generate an electromagnetic field in response to a current input. The electromagnetic field, in turn, moves the armature relative to the stator during motor operation.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: December 23, 2008
    Assignee: Otologics, LLC
    Inventors: Robert Edwin Schneider, Scott Allan Miller, III
  • Patent number: 7463745
    Abstract: A method for reducing oscillation of a feedback signal in a hearing aid and hearing aid configured according to the present method is provided. The method includes the steps of determining the phase of the feedback signal over a feedback path of the hearing aid and shifting only the phase of the feedback signal a predetermined amount, without modification of other signal characteristics, to achieve a non-zero net phase of the feedback signal over the feedback path such that oscillation of the signal is prevented. In one embodiment of the present method, the step of determining the phase may be performed at the time of fitting of the hearing aid to a patient. In another embodiment of the present method, the method includes the step of periodically determining the phase of the feedback signal over the feedback path such that the phase shifting may be performed based on the periodically determined phase.
    Type: Grant
    Filed: April 9, 2004
    Date of Patent: December 9, 2008
    Assignee: Otologic, LLC
    Inventor: Scott Allan Miller, III
  • Patent number: 7447319
    Abstract: A noninvasive method and system are provided for assessing the performance of implanted actuators of semi or fully-implantable hearing aid systems. The invention utilizes an externally positioned measurement device to obtain a test measure of the electrical signal passing through an implanted actuator when driven by a test signal of predetermined characteristics. In one embodiment, the measurement device may comprise a pair of coils for measuring the magnetic field generated by an implanted actuator utilized to simulate the middle ear of a patient. The magnetic field strength is directly related to the amount of current passing through the actuator. In turn, such current is inversely related to the electrical impedance present at the implanted actuator. Such electrical impedance is directly related to the mechanical impedance present at the interface between the implanted actuator and middle ear of a patient.
    Type: Grant
    Filed: April 13, 2006
    Date of Patent: November 4, 2008
    Assignee: Otologics, LLC
    Inventors: Douglas Alan Miller, Scott Allan Miller, III