Patents by Inventor Scott Barker

Scott Barker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240027714
    Abstract: An exemplary optical cable includes a first type of ribbon bundles, a second type of ribbon bundles, a third type of ribbon bundles, a plurality of strength rods, and an outer jacket. Each of the first, the second, and third type of ribbon bundles includes a first, a second, a third flexible ribbon with corresponding optical fibers disposed within a ribbon bundle jacket. The first type of ribbon bundles is arranged in an interlocking pattern in a central region of the optical cable. The second type of ribbon bundles and the third type of ribbon bundles are disposed around the first type of ribbon bundles in a peripheral region of the optical cable.
    Type: Application
    Filed: July 19, 2022
    Publication date: January 25, 2024
    Inventors: Clint Nicholaus Anderson, Jeffrey Scott Barker, Brian G. Risch, Ryan Truong, Ben H. Wells, Gavin Lin, Donald Ray Parris
  • Publication number: 20240012216
    Abstract: An optical cable includes a plurality of buffer tubes and an outer jacket surrounding the plurality of buffer tubes. Each of the plurality of buffer tubes includes a buffer tube jacket surrounding a plurality of flexible ribbons. The buffer tube jacket includes a first deformable material that has undergone deformation during formation of the optical cable to conform to an irregular axial cross-sectional shape of each respective plurality of flexible ribbons. Each flexible ribbon includes a plurality of optical fibers and a first longitudinal length. For each flexible ribbon, each optical fiber of the plurality of optical fibers is attached to an adjacent optical fiber of the plurality of optical fibers along a bond region comprising a second longitudinal length that is less than the first longitudinal length. The cable has a fiber density between about 5.0 and about 10 fibers/mm2.
    Type: Application
    Filed: September 21, 2023
    Publication date: January 11, 2024
    Inventors: Ben H. Wells, Ehsan Fallahmohammadi, Brian G. Risch, Clint Nicholaus Anderson, John R. Sach, Jeffrey Scott Barker
  • Publication number: 20240007760
    Abstract: Systems and techniques are provided for processing one or more frames. For example, a process can include obtaining a first plurality of frames associated with a first settings domain from an image capture system, wherein the first plurality of frames is captured prior to obtaining a capture input. The process can include obtaining a reference frame associated with a second settings domain from the image capture system, wherein the reference frame is captured proximate to obtaining the capture input. The process can include obtaining a second plurality of frames associated with the second settings domain from the image capture system, wherein the second plurality of frames is captured after the reference frame. The process can include, based on the reference frame, transforming at least a portion of the first plurality of frames to generate a transformed plurality of frames associated with the second settings domain.
    Type: Application
    Filed: September 14, 2023
    Publication date: January 4, 2024
    Inventors: Wesley James HOLLAND, Micha GALOR GLUSKIN, Venkata Ravi Kiran DAYANA, Upal MAHBUB, Scott BARKER
  • Patent number: 11800242
    Abstract: Systems and techniques are provided for processing one or more frames. For example, a process can include obtaining a first plurality of frames associated with a first settings domain from an image capture system, wherein the first plurality of frames is captured prior to obtaining a capture input. The process can include obtaining a reference frame associated with a second settings domain from the image capture system, wherein the reference frame is captured proximate to obtaining the capture input. The process can include obtaining a second plurality of frames associated with the second settings domain from the image capture system, wherein the second plurality of frames is captured after the reference frame. The process can include, based on the reference frame, transforming at least a portion of the first plurality of frames to generate a transformed plurality of frames associated with the second settings domain.
    Type: Grant
    Filed: September 15, 2021
    Date of Patent: October 24, 2023
    Assignee: QUALCOMM Incorporated
    Inventors: Wesley James Holland, Micha Galor Gluskin, Venkata Ravi Kiran Dayana, Upal Mahbub, Scott Barker
  • Patent number: 11796750
    Abstract: An optical cable includes a plurality of buffer tubes and an outer jacket surrounding the plurality of buffer tubes. Each of the plurality of buffer tubes includes a buffer tube jacket surrounding a plurality of flexible ribbons. The buffer tube jacket includes a first deformable material that has undergone permanent plastic deformation during formation of the optical cable to conform to an irregular axial cross-sectional shape of each respective plurality of flexible ribbons. Each flexible ribbon includes a plurality of optical fibers and a first longitudinal length. For each flexible ribbon, each optical fiber of the plurality of optical fibers is attached to an adjacent optical fiber of the plurality of optical fibers along a bond region comprising a second longitudinal length that is less than the first longitudinal length.
    Type: Grant
    Filed: January 31, 2022
    Date of Patent: October 24, 2023
    Assignee: PRYSMIAN S.P.A.
    Inventors: Ben H. Wells, Ehsan Fallahmohammadi, Brian G. Risch, Clint Nicholaus Anderson, John R. Sach, Jeffrey Scott Barker
  • Publication number: 20230266549
    Abstract: An optical-fiber ribbon having excellent flexibility, strength, and robustness facilitates separation of an optical fiber from the optical-fiber ribbon without damaging the optical fiber's glass core, glass cladding, primary coating, secondary coating, and ink layer, if present.
    Type: Application
    Filed: April 26, 2023
    Publication date: August 24, 2023
    Inventors: Ehsan Fallahmohammadi, Clint Nicholaus Anderson, Brian G. Risch, Andrea Terry, John R. Sach, Jeffrey Scott Barker, Ryan Truong
  • Patent number: 11656417
    Abstract: An optical-fiber ribbon having excellent flexibility, strength, and robustness facilitates separation of an optical fiber from the optical-fiber ribbon without damaging the optical fiber's glass core, glass cladding, primary coating, secondary coating, and ink layer, if present.
    Type: Grant
    Filed: February 3, 2022
    Date of Patent: May 23, 2023
    Assignee: Prysmian S.p.A.
    Inventors: Ehsan Fallahmohammadi, Clint Nicholaus Anderson, Brian G. Risch, Andrea Terry, John R. Sach, Jeffrey Scott Barker, Ryan Truong
  • Publication number: 20230082420
    Abstract: Systems and techniques are described herein for displaying digital media content (e.g., electronic books) on physical surfaces or objects. The systems and techniques can be implemented by various types of systems, such as by an extended reality (XR) system or device. For example, a process can include receiving, by an extended reality device, a request to display media content on a display surface. The process can include determining a pose of the display surface and a pose of the extended reality device. The process can include, based on the pose of the display surface and the pose of the extended reality device, displaying the media content by the extended reality device relative to the display surface.
    Type: Application
    Filed: September 13, 2021
    Publication date: March 16, 2023
    Inventors: Yang YU, Scott BARKER, Jonathan KIES
  • Publication number: 20230080803
    Abstract: Systems and techniques are provided for processing one or more frames. For example, a process can include obtaining a first plurality of frames associated with a first settings domain from an image capture system, wherein the first plurality of frames is captured prior to obtaining a capture input. The process can include obtaining a reference frame associated with a second settings domain from the image capture system, wherein the reference frame is captured proximate to obtaining the capture input. The process can include obtaining a second plurality of frames associated with the second settings domain from the image capture system, wherein the second plurality of frames is captured after the reference frame. The process can include, based on the reference frame, transforming at least a portion of the first plurality of frames to generate a transformed plurality of frames associated with the second settings domain.
    Type: Application
    Filed: September 15, 2021
    Publication date: March 16, 2023
    Inventors: Wesley James HOLLAND, Micha GALOR GLUSKIN, Venkata Ravi Kiran DAYANA, Upal MAHBUB, Scott BARKER
  • Publication number: 20230013589
    Abstract: The present invention relates to an optical fiber ribbon, comprising a plurality of adjacent optical fiber units extending in a longitudinal direction and arranged in parallel forming an optical fiber assembly having a width, each of the optical fiber units comprising either a single fiber or a group of at most three optical fibers, preferably two optical fibers, encapsulated with a matrix material; and a plurality of successive elongated rectilinear beads of a bonding material being arranged along a length of said assembly; each of said plurality of beads being configured to form an elongated bond between two adjacent optical fiber units of the plurality of optical fiber units. The present invention moreover relates to a method of producing such an optical fiber ribbon. A fluorescent tracer is present in the beads.
    Type: Application
    Filed: September 29, 2022
    Publication date: January 19, 2023
    Inventors: Ehsan Fallahmohammadi, Brian G. Risch, John R. Sach, Jeffrey Scott Barker, Clint Anderson
  • Patent number: 11500171
    Abstract: The present invention relates to an optical fiber ribbon, comprising a plurality of adjacent optical fiber units extending in a longitudinal direction and arranged in parallel forming an optical fiber assembly having a width, each of the optical fiber units comprising either a single fiber or a group of at most three optical fibers, preferably two optical fibers, encapsulated with a matrix material; and a plurality of successive elongated rectilinear beads of a bonding material being arranged along a length of said assembly; each of said plurality of beads being configured to form an elongated bond between two adjacent optical fiber units of the plurality of optical fiber units; wherein a first bead forming a first bond connects a first pair of adjacent optical fiber units while the successive bond formed by the successive bead, connects a further pair of adjacent optical fiber units, wherein at least one optical fiber unit of the further pair differs from the optical fiber units of the first pair; wherein at
    Type: Grant
    Filed: January 15, 2018
    Date of Patent: November 15, 2022
    Assignee: Prysmian S.p.A.
    Inventors: Ehsan Fallahmohammadi, Brian G. Risch, John R. Sach, Jeffrey Scott Barker, Clint Anderson
  • Publication number: 20220155540
    Abstract: An optical-fiber ribbon having excellent flexibility, strength, and robustness facilitates separation of an optical fiber from the optical-fiber ribbon without damaging the optical fiber's glass core, glass cladding, primary coating, secondary coating, and ink layer, if present.
    Type: Application
    Filed: February 3, 2022
    Publication date: May 19, 2022
    Inventors: Ehsan Fallahmohammadi, Clint Nicholaus Anderson, Brian G. Risch, Andrea Terry, John R. Sach, Jeffrey Scott Barker, Ryan Truong
  • Publication number: 20220155541
    Abstract: An optical cable includes a plurality of buffer tubes and an outer jacket surrounding the plurality of buffer tubes. Each of the plurality of buffer tubes includes a buffer tube jacket surrounding a plurality of flexible ribbons. The buffer tube jacket includes a first deformable material that has undergone permanent plastic deformation during formation of the optical cable to conform to an irregular axial cross-sectional shape of each respective plurality of flexible ribbons. Each flexible ribbon includes a plurality of optical fibers and a first longitudinal length. For each flexible ribbon, each optical fiber of the plurality of optical fibers is attached to an adjacent optical fiber of the plurality of optical fibers along a bond region comprising a second longitudinal length that is less than the first longitudinal length.
    Type: Application
    Filed: January 31, 2022
    Publication date: May 19, 2022
    Inventors: Ben H. Wells, Ehsan Fallahmohammadi, Brian G. Risch, Clint Nicholaus Anderson, John R. Sach, Jeffrey Scott Barker
  • Patent number: 11262516
    Abstract: An optical cable includes a plurality of deformable buffer tubes and an outer jacket surrounding the plurality of deformable buffer tubes. Each deformable buffer tube of the plurality of deformable buffer tubes includes a single flexible ribbon including a plurality of optical fibers. Each deformable buffer tube further includes an axial cross-section of the deformable buffer tube that includes the single flexible ribbon. The axial cross-section comprises an irregular shape.
    Type: Grant
    Filed: December 7, 2018
    Date of Patent: March 1, 2022
    Assignee: PRYSMIAN S.P.A.
    Inventors: Ben H. Wells, Ehsan Fallahmohammadi, Brian G. Risch, Clint Nicholaus Anderson, John R. Sach, Jeffrey Scott Barker
  • Patent number: 11256051
    Abstract: An optical-fiber ribbon having excellent flexibility, strength, and robustness facilitates separation of an optical fiber from the optical-fiber ribbon without damaging the optical fiber's glass core, glass cladding, primary coating, secondary coating, and ink layer, if present.
    Type: Grant
    Filed: April 23, 2020
    Date of Patent: February 22, 2022
    Assignee: Prysmian S.p.A.
    Inventors: Ehsan Fallahmohammadi, Clint Nicholaus Anderson, Brian G. Risch, Andrea Terry, John R. Sach, Jeffrey Scott Barker, Ryan Truong
  • Patent number: 11169342
    Abstract: An optical-fiber ribbon having excellent flexibility, strength, and robustness includes optical fibers having a sacrificial, outer release layer that facilitates separation of an optical fiber from the optical-fiber ribbon without damaging the optical fiber's glass core, glass cladding, primary coating, secondary coating, and ink layer, if present.
    Type: Grant
    Filed: August 20, 2020
    Date of Patent: November 9, 2021
    Assignee: Prysmian S.p.A.
    Inventors: Ehsan Fallahmohammadi, Clint Nicholaus Anderson, Brian G. Risch, Andrea Terry, John R. Sach, Jeffrey Scott Barker
  • Publication number: 20210223288
    Abstract: A probe chip device and a method for fabricating a probe chip device with an integrated diode sensor are disclosed. In one example, a probe chip device includes a beam head element that includes at least one probe tip that is configured to electrically probe a device under test. The probe chip device further includes a diode sensor that is heterogeneously integrated on the beam head element and is proximally positioned to the at least one probe tip.
    Type: Application
    Filed: May 10, 2019
    Publication date: July 22, 2021
    Applicant: University of Virginia Patent Foundation
    Inventors: Robert M. WEIKLE, Linli XIE, Michael E. CYBEREY, Souheil NADRI, Matthew F. BAUWENS, Arthur Weston LICHTENBERGER, Nicolas Scott BARKER
  • Publication number: 20210063664
    Abstract: The present invention relates to an optical fiber ribbon, comprising a plurality of adjacent optical fiber units extending in a longitudinal direction and arranged in parallel forming an optical fiber assembly having a width, each of the optical fiber units comprising either a single fiber or a group of at most three optical fibers, preferably two optical fibers, encapsulated with a matrix material; and a plurality of successive elongated rectilinear beads of a bonding material being arranged along a length of said assembly; each of said plurality of beads being configured to form an elongated bond between two adjacent optical fiber units of the plurality of optical fiber units; wherein a first bead forming a first bond connects a first pair of adjacent optical fiber units while the successive bond formed by the successive bead, connects a further pair of adjacent optical fiber units, wherein at least one optical fiber unit of the further pair differs from the optical fiber units of the first pair; wherein at
    Type: Application
    Filed: January 15, 2018
    Publication date: March 4, 2021
    Inventors: Ehsan Fallahmohammadi, Brian G. Risch, John R. Sach, Jeffrey Scott Barker, Clint Anderson
  • Publication number: 20200386961
    Abstract: An optical-fiber ribbon having excellent flexibility, strength, and robustness facilitates separation of an optical fiber from the optical-fiber ribbon without damaging the optical fiber's glass core, glass cladding, primary coating, secondary coating, and ink layer, if present.
    Type: Application
    Filed: April 23, 2020
    Publication date: December 10, 2020
    Inventors: Ehsan Fallahmohammadi, Clint Nicholaus Anderson, Brian G. Risch, Andrea Terry, John R. Sach, Jeffrey Scott Barker, Ryan Truong
  • Publication number: 20200379198
    Abstract: An optical-fiber ribbon having excellent flexibility, strength, and robustness includes optical fibers having a sacrificial, outer release layer that facilitates separation of an optical fiber from the optical-fiber ribbon without damaging the optical fiber's glass core, glass cladding, primary coating, secondary coating, and ink layer, if present.
    Type: Application
    Filed: August 20, 2020
    Publication date: December 3, 2020
    Inventors: Ehsan Fallahmohammadi, Clint Nicholaus Anderson, Brian G. Risch, Andrea Terry, John R. Sach, Jeffrey Scott Barker