Patents by Inventor Scott Brainard

Scott Brainard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8175700
    Abstract: One or more inductors and one or more capacitors are physically disposed relative to one another in series and are electrically connected to one another in parallel to form a bandstop filter. Chip inductors and chip capacitors having spaced apart conductive terminals are physically arranged in end-to-end abutting relation to minimize electrical potential between adjacent conductive terminals. The bandstop filter may be hermetically sealed within a biocompatible container for use with an implantable lead or electrode of a medical device. The values of the inductors and the capacitors are selected such that the bandstop filter is resonant at one or more selected frequencies, such as an MRI pulsed frequency.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: May 8, 2012
    Assignee: Greatbatch Ltd.
    Inventors: Robert Shawn Johnson, Kishore Kumar Kondabatni, Christopher Michael Williams, Ryan Thomas Bauer, Scott Brainard, Qingshan Ye, Warren S. Dabney, Robert A. Stevenson, Jeff Fleigle, Holly Noelle Moschiano
  • Publication number: 20120035698
    Abstract: One or more inductors and one or more capacitors are physically disposed relative to one another in series and are electrically connected to one another in parallel to form a bandstop filter. Chip inductors and chip capacitors having spaced apart conductive terminals are physically arranged in end-to-end abutting relation to minimize electrical potential between adjacent conductive terminals. The bandstop filter may be hermetically sealed within a biocompatible container for use with an implantable lead or electrode of a medical device. The values of the inductors and the capacitors are selected such that the bandstop filter is resonant at one or more selected frequencies, such as an MRI pulsed frequency.
    Type: Application
    Filed: October 14, 2011
    Publication date: February 9, 2012
    Applicant: Greatbatch Ltd.
    Inventors: Robert Shawn Johnson, Kishore Kumar Kondabatni, Christopher Michael Williams, Ryan Thomas Bauer, Scott Brainard, Qingshan Ye, Warren S. Dabney, Robert A. Stevenson, Jeff Fleigle, Holly Noell Moschiano
  • Patent number: 8108042
    Abstract: One or more inductors and one or more capacitors are physically disposed relative to one another in series and are electrically connected to one another in parallel to form a bandstop filter. Chip inductors and chip capacitors having spaced apart conductive terminals are physically arranged in end-to-end abutting relation to minimize electrical potential between adjacent conductive terminals. The bandstop filter may be hermetically sealed within a biocompatible container for use with an implantable lead or electrode of a medical device. The values of the inductors and the capacitors are selected such that the bandstop filter is resonant at one or more selected frequencies, such as an MRI pulsed frequency.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: January 31, 2012
    Assignee: Greatbatch Ltd.
    Inventors: Robert Shawn Johnson, Kishore Kumar Kondabatni, Christopher Michael Williams, Ryan Thomas Bauer, Scott Brainard, Qingshan Ye, Warren S. Dabney, Robert A. Stevenson, Jeff Fleigle, Holly Noell Moschiano
  • Patent number: 8000801
    Abstract: An energy management system facilitates the transfer of high frequency energy coupled into an implanted abandoned lead at a selected RF frequency or frequency band, to an energy dissipating surface. This is accomplished by conductively coupling the implanted abandoned lead to the energy dissipating surface of an abandoned lead cap through an energy diversion circuit including one or more passive electronic network components whose impedance characteristics are at least partially tuned to the implanted abandoned lead's impedance characteristics.
    Type: Grant
    Filed: January 26, 2010
    Date of Patent: August 16, 2011
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Buehl E. Truex, Barry C. Muffoletto, Warren S. Dabney, Christine A. Frysz, Christopher Michael Williams, Holly Noelle Moschiano, Jeff Fleigle, Kishore Kumar Kondabatni, Richard L. Brendel, Robert Shawn Johnson, Scott Brainard, Henry R. Halperin, Albert C. Lardo
  • Patent number: 7966075
    Abstract: An energy management system that facilitates the transfer of high frequency energy induced on an implanted lead or a leadwire includes an energy dissipating surface associated with the implanted lead or the leadwire, a diversion or diverter circuit associated with the energy dissipating surface, and at least one switch for diverting energy in the implanted lead or the leadwire through the diversion circuit to the energy dissipating surface. In alternate configurations, the switch may be disposed between the implanted lead or the leadwire and the diversion circuit, or disposed so that it electrically opens the implanted lead or the leadwire when diverting energy through the diversion circuit to the energy dissipating surface. The switch may comprise a single or multi-pole double or single throw switch. The diversion circuit may be either a high pass filter or a low pass filter.
    Type: Grant
    Filed: November 3, 2010
    Date of Patent: June 21, 2011
    Assignee: Greatbatch Ltd.
    Inventors: Robert Shawn Johnson, Warren S. Dabney, Robert A. Stevenson, Christopher Michael Williams, Holly Noelle Moschiano, Scott Brainard, Daniel Robert Kaiser, Henry R. Halperin, Albert C. Lardo
  • Patent number: 7957806
    Abstract: A shielded three-terminal flat-through EMI/energy dissipating filter includes an active electrode plate through which a circuit current passes between a first terminal and a second terminal, a first shield plate on a first side of the active electrode plate, and a second shield plate on a second side of the active electrode plate opposite the first shield plate. The first and second shield plates are conductively coupled to a grounded third terminal. In preferred embodiments, the active electrode plate and the shield plates are at least partially disposed with a hybrid flat-through substrate that may include a flex cable section, a rigid cable section, or both.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: June 7, 2011
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Buehl E. Truex, Richard L. Brendel, Christine A. Frysz, Warren S. Dabney, Haythem Hussein, Jose Luis Lorente-Adame, Robert Shawn Johnson, Scott Brainard, Christopher Michael Williams
  • Patent number: 7920916
    Abstract: One or more inductors and one or more capacitors are physically disposed relative to one another in series and are electrically connected to one another in parallel to form a bandstop filter. Chip inductors and chip capacitors having spaced apart conductive terminals are physically arranged in end-to-end abutting relation to minimize electrical potential between adjacent conductive terminals. The bandstop filter may be hermetically sealed within a biocompatible container for use with an implantable lead or electrode of a medical device. The values of the inductors and the capacitors are selected such that the bandstop filter is resonant at one or more selected frequencies, such as an MRI pulsed frequency.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: April 5, 2011
    Assignee: Greatbatch Ltd.
    Inventors: Robert Shawn Johnson, Kishore Kumar Kondabatni, Christopher Michael Williams, Ryan Thomas Bauer, Scott Brainard, Qingshan Ye, Warren S. Dabney, Robert A. Stevenson, Jeff Fleigle, Holly Noelle Moschiano
  • Publication number: 20110071358
    Abstract: A medical device for placing a medical lead in the human body using minimally invasive techniques is described. One lead includes a lead body connected to a lead head having an aperture for providing fiber optic access to the interior of a helical electrode. The fiber optic shaft may be disposed within or along-side a drive shaft releasably coupled to the head to rotate the head. The drive shaft and lead body may be delivered using a delivery catheter. The delivery catheter can be advanced though a small incision to the target tissue site, and the site remotely visualized through the fiber optic scope extending through the lead head aperture. Some catheters include a distal mapping electrode readable from the catheter proximal portion or handle. The lead head can be rotated, rotating the helical electrode into the tissue, and the catheter, drive shaft, and fiber optic probe removed.
    Type: Application
    Filed: November 29, 2010
    Publication date: March 24, 2011
    Applicant: Greatbatch Ltd.
    Inventors: John M. Swoyer, Allison M. Kidder, Jeffrey Zweber, Scott Brainard, Valerie Glazier
  • Publication number: 20110040343
    Abstract: An energy management system that facilitates the transfer of high frequency energy induced on an implanted lead or a leadwire includes an energy dissipating surface associated with the implanted lead or the leadwire, a diversion or diverter circuit associated with the energy dissipating surface, and at least one switch for diverting energy in the implanted lead or the leadwire through the diversion circuit to the energy dissipating surface. In alternate configurations, the switch may be disposed between the implanted lead or the leadwire and the diversion circuit, or disposed so that it electrically opens the implanted lead or the leadwire when diverting energy through the diversion circuit to the energy dissipating surface. The switch may comprise a single or multi-pole double or single throw switch. The diversion circuit may be either a high pass filter or a low pass filter.
    Type: Application
    Filed: November 3, 2010
    Publication date: February 17, 2011
    Applicant: GREATBATCH LTD.
    Inventors: Robert Shawn Johnson, Warren S. Dabney, Robert A. Stevenson, Christopher Michael Williams, Holly Noelle Moschiano, Scott Brainard, Daniel Robert Kaiser, Henry R. Halperin, Albert C. Lardo
  • Publication number: 20110022140
    Abstract: An energy management system facilitates the transfer of high frequency energy coupled into an implanted abandoned lead at a selected RF frequency or frequency band, to an energy dissipating surface. This is accomplished by conductively coupling the implanted abandoned lead to the energy dissipating surface of an abandoned lead cap through an energy diversion circuit including one or more passive electronic network components whose impedance characteristics are at least partially tuned to the implanted abandoned lead's impedance characteristics.
    Type: Application
    Filed: October 12, 2010
    Publication date: January 27, 2011
    Applicant: GREATBATCH LTD.
    Inventors: Robert A. Stevenson, Buehl E. Truex, Barry C. Muffoletto, Warren S. Dabney, Christine A. Frysz, Christopher Michael Williams, Holly Noelle Moschiano, Jeff Fleigle, Kishore Kumar Kondabatni, Richard L. Brendel, Robert Shawn Johnson, Scott Brainard, Henry R. Halperin, Albert C. Lardo
  • Publication number: 20110004283
    Abstract: A shielded three-terminal flat-through EMI/energy dissipating filter includes an active electrode plate through which a circuit current passes between a first terminal and a second terminal, a first shield plate on a first side of the active electrode plate, and a second shield plate on a second side of the active electrode plate opposite the first shield plate. The first and second shield plates are conductively coupled to a grounded third terminal. In preferred embodiments, the active electrode plate and the shield plates are at least partially disposed with a hybrid flat-through substrate that may include a flex cable section, a rigid cable section, or both.
    Type: Application
    Filed: September 27, 2010
    Publication date: January 6, 2011
    Applicant: GREATBATCH LTD.
    Inventors: Robert A. Stevenson, Buehl E. Truex, Richard L. Brendel, Christine A. Frysz, Warren S. Dabney, Haythem Hussein, Jose Luis Lorente-Adame, Robert Shawn Johnson, Scott Brainard, Christopher Michael Williams
  • Publication number: 20100324640
    Abstract: A lead body adapted for in-vivo implantation in a living subject includes a proximal end configured for electrical and mechanical connection to a therapy or a monitoring device, and a distal end. A collar is disposed at the distal end of the lead body, and a casing is disposed within the collar and is translatable along a central longitudinal axis of the collar. At least one electrical conductor extends substantially the length of the lead body, and an electronic component is disposed within the casing and conductively coupled to the electrical conductor. An electrode is mechanically connected to the casing and conductively coupled to the electronic component. A seal is disposed between the casing assembly and the collar to prevent passage of ionic fluid into the lead body through its distal end.
    Type: Application
    Filed: September 1, 2010
    Publication date: December 23, 2010
    Applicant: GREATBATCH LTD.
    Inventors: Ryan Thomas Bauer, Scott Brainard, Lawrence M. Kane, Warren S. Dabney, Robert Shawn Johnson, Robert A. Stevenson, Holly Noelle Moschiano
  • Publication number: 20100324639
    Abstract: An energy management system facilitates the transfer of high frequency energy coupled into an implanted abandoned lead at a selected RF frequency or frequency band, to an energy dissipating surface. This is accomplished by conductively coupling the implanted abandoned lead to the energy dissipating surface of an abandoned lead cap through an energy diversion circuit including one or more passive electronic network components whose impedance characteristics are at least partially tuned to the implanted abandoned lead's impedance characteristics.
    Type: Application
    Filed: August 5, 2010
    Publication date: December 23, 2010
    Applicant: GREATBATCH LTD.
    Inventors: Robert A. Stevenson, Buehl E. Truex, Barry C. Muffoletto, Warren S. Dabney, Christine A. Frysz, Christopher Michael Williams, Holly Noelle Moschiano, Jeff Fleigle, Kishore Kumar Kondabatni, Richard L. Brendel, Robert Shawn Johnson, Scott Brainard, Henry R. Halperin, Albert C. Lardo
  • Patent number: 7844348
    Abstract: Devices and methods for placing medical leads using minimally invasive techniques. One lead includes a lead body connected to a lead head having an aperture for providing fiber optic access to the interior of a helical electrode. The fiber optic shaft may be disposed within or along-side a drive shaft releasably coupled to the head to rotate the head. The drive shaft and lead body may be delivered using a delivery catheter. The delivery catheter can be advanced though a small incision to the target tissue site, and the site remotely visualized through the fiber optic scope extending through the lead head aperture. Some catheters include a distal mapping electrode readable from the catheter proximal portion or handle. The lead head can be rotated, rotating the helical electrode into the tissue, and the catheter, drive shaft, and fiber optic probe removed.
    Type: Grant
    Filed: August 8, 2006
    Date of Patent: November 30, 2010
    Assignee: Greatbatch Ltd.
    Inventors: John M. Swoyer, Allison M. Kidder, Jeffrey Sweber, Scott Brainard, Valerie Glazier
  • Publication number: 20100231327
    Abstract: One or more inductors and one or more capacitors are physically disposed relative to one another in series and are electrically connected to one another in parallel to form a bandstop filter. Chip inductors and chip capacitors having spaced apart conductive terminals are physically arranged in end-to-end abutting relation to minimize electrical potential between adjacent conductive terminals. The bandstop filter may be hermetically sealed within a biocompatible container for use with an implantable lead or electrode of a medical device. The values of the inductors and the capacitors are selected such that the bandstop filter is resonant at one or more selected frequencies, such as an MRI pulsed frequency.
    Type: Application
    Filed: June 7, 2010
    Publication date: September 16, 2010
    Applicant: GREATBATCH LTD.
    Inventors: Robert Shawn Johnson, Kishore Kumar Kondabatni, Christopher Michael Williams, Ryan Thomas Bauer, Scott Brainard, Qingshan Ye, Warren S. Dabney, Robert A. Stevenson, Jeff Fleigle, Holly Noelle Moschiano
  • Publication number: 20100208397
    Abstract: An energy management system that facilitates the transfer of high frequency energy induced on an implanted lead or a leadwire includes an energy dissipating surface associated with the implanted lead or the leadwire, a diversion or diverter circuit associated with the energy dissipating surface, and at least one switch disposed between the diversion circuit and the AIMD electronics for diverting energy in the implanted lead or the leadwire through the diversion circuit to the energy dissipating surface. The switch may comprise a single or multi-pole double or single throw switch. The diversion circuit may be either a high pass filter or a low pass filter.
    Type: Application
    Filed: March 25, 2010
    Publication date: August 19, 2010
    Applicant: GREATBATCH LTD.
    Inventors: Robert Shawn Johnson, Warren S. Dabney, Robert A. Stevenson, Christopher Michael Williams, Holly Noelle Moschiano, Scott Brainard
  • Publication number: 20100191236
    Abstract: An energy management system that facilitates the transfer of high frequency energy induced on an implanted lead or a leadwire includes an energy dissipating surface associated with the implanted lead or the leadwire, a diversion or diverter circuit associated with the energy dissipating surface, and at least one non-linear circuit element switch for diverting energy in the implanted lead or the leadwire through the diversion circuit to the energy dissipating surface. In alternate configurations, the switch may be disposed between the implanted lead or the leadwire and the diversion circuit, or disposed so that it electrically opens the implanted lead or the leadwire when diverting energy through the diversion circuit to the energy dissipating surface. The non-linear circuit element switch is typically a PIN diode. The diversion circuit may be either a high pass filter or a low pass filter.
    Type: Application
    Filed: February 17, 2010
    Publication date: July 29, 2010
    Applicant: GREATBATCH LTD.
    Inventors: Robert Shawn Johnson, Warren S. Dabney, Robert A. Stevenson, Christopher Michael Williams, Holly Noelle Moschiano, Scott Brainard, Daniel Robert Kaiser, Henry R. Halperin, Albert C. Lardo, Scott W. Kelley
  • Publication number: 20100174349
    Abstract: An energy management system facilitates the transfer of high frequency energy coupled into an implanted abandoned lead at a selected RF frequency or frequency band, to an energy dissipating surface. This is accomplished by conductively coupling the implanted abandoned lead to the energy dissipating surface of an abandoned lead cap through an energy diversion circuit including one or more passive electronic network components whose impedance characteristics are at least partially tuned to the implanted abandoned lead's impedance characteristics.
    Type: Application
    Filed: January 26, 2010
    Publication date: July 8, 2010
    Applicant: GREATBATCH LTD.
    Inventors: Robert A. Stevenson, Buehl E. Truex, Barry C. Muffoletto, Warren S. Dabney, Christine A. Frysz, Christopher Michael Williams, Holly Noelle Moschiano, Jeff Fleigle, Kishore Kumar Kondabatni, Richard L. Brendel, Robert Shawn Johnson, Scott Brainard, Henry R. Halperin, Albert C. Lardo
  • Publication number: 20100168821
    Abstract: An energy management system that facilitates the transfer of high frequency energy induced on an implanted lead or a leadwire includes an energy dissipating surface associated with the implanted lead or the leadwire, a diversion or diverter circuit associated with the energy dissipating surface, and at least one switch for diverting energy in the implanted lead or the leadwire through the diversion circuit to the energy dissipating surface. In alternate configurations, the switch may be disposed between the implanted lead or the leadwire and the diversion circuit, or disposed so that it electrically opens the implanted lead or the leadwire when diverting energy through the diversion circuit to the energy dissipating surface. The switch may comprise a single or multi-pole double or single throw switch. The diversion circuit may be either a high pass filter or a low pass filter.
    Type: Application
    Filed: January 12, 2010
    Publication date: July 1, 2010
    Applicant: GREATBATCH LTD.
    Inventors: Robert Shawn Johnson, Warren S. Dabney, Robert A. Stevenson, Christopher Michael Williams, Holly Noelle Moschiano, Scott Brainard, Daniel Robert Kaiser, Henry R. Halperin, Albert C. Lardo
  • Publication number: 20100160997
    Abstract: An energy management system facilitates the transfer of high frequency energy coupled into an implanted lead at a selected RF frequency or frequency band, to an energy dissipating surface. This is accomplished by conductively coupling the implanted lead to the energy dissipating surface through an energy diversion circuit including one or more passive electronic network components whose impedance characteristics are at least partially tuned to the implanted lead's impedance characteristics.
    Type: Application
    Filed: January 12, 2010
    Publication date: June 24, 2010
    Applicant: GREATBATCH LTD.
    Inventors: Robert Shawn Johnson, Warren S. Dabney, Robert A. Stevenson, Christopher Michael Williams, Holly Noelle Moschiano, Scott Brainard, Daniel Robert Kaiser, Henry R. Halperin, Albert C. Lardo