Patents by Inventor Scott C. Anderson

Scott C. Anderson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6858005
    Abstract: A steerable, tendon-driven endoscope is described herein. The endoscope has an elongated body with a manually or selectively steerable distal portion and an automatically controlled, segmented proximal portion. The steerable distal portion and the segment of the controllable portion are actuated by at least two tendons. As the endoscope is advanced, the user maneuvers the distal portion, and a motion controller actuates tendons in the segmented proximal portion so that the proximal portion assumes the selected curve of the selectively steerable distal portion. By this method the selected curves are propagated along the endoscope body so that the endoscope largely conforms to the pathway selected. When the endoscope is withdrawn proximally, the selected curves can propagate distally along the endoscope body. This allows the endoscope to negotiate tortuous curves along a desired path through or around and between organs within the body.
    Type: Grant
    Filed: August 27, 2002
    Date of Patent: February 22, 2005
    Assignee: Neo Guide Systems, Inc.
    Inventors: Robert M. Ohline, Joseph M. Tartaglia, Amir Belson, Alex T. Roth, Wade A. Keller, Scott C. Anderson, Chris A. Julian
  • Patent number: 6840936
    Abstract: An ablating device has a cover which holds an interface material such as a gel. The cover contains the interface material during initial placement of the device. The ablating device may also have a removable tip or a membrane filled with fluid. In still another aspect, the ablating device may be submerged in liquid during operation.
    Type: Grant
    Filed: February 15, 2002
    Date of Patent: January 11, 2005
    Assignee: Epicor Medical, Inc.
    Inventors: John W. Sliwa, Jr., Matthias Vaska, Jonathan L. Podmore, Scott C. Anderson, Gerard Champsaur, John E. Crowe, Stephen A. Morse, Gary Henry Miller
  • Publication number: 20040260278
    Abstract: The invention provides apparatus and methods for ablating tissue and is particularly useful for creating lesions in the heart wall for the treatment of atrial fibrillation. The apparatus has a suction well which is adhered to the tissue to be ablated. The ablating element is surrounded by the suction well. A fluid is delivered to the ablating element to conduct RF energy to the tissue and/or to cool the tissue. The device is preferably formed with a number of cells with each cell having a suction well and at least one ablating element. The device also preferably has a locking mechanism for locking one part of the device to another part of the device to form a closed loop for ablating around structures such as the pulmonary veins.
    Type: Application
    Filed: April 12, 2004
    Publication date: December 23, 2004
    Inventors: Scott C. Anderson, Jonathan L. Podmore, Roxanne L. Richman, Matthias Vaska, David A. Gallup, John E. Crowe, Jack E. Ulstad, Benjamin Pless
  • Publication number: 20040255739
    Abstract: Devices and methods for collecting or cutting and collecting a specimen from a mass of tissue within a patient. The device may include a specimen collection assembly including a flexible membrane that isolates collected specimen from the surrounding tissue. The collection device may also include structures that draw the collected specimen toward the shaft and/or otherwise ease the insertion and retraction of the device and the collected specimen from the patient through a small incision.
    Type: Application
    Filed: June 18, 2003
    Publication date: December 23, 2004
    Applicant: RUBICOR MEDICAL, INC.
    Inventors: Mark J. Clifford, Scott C. Anderson, James W. Vetter, Daniel M. Brounstein, Ary S. Chernomorsky
  • Patent number: 6805129
    Abstract: A control system alters one or more characteristics of an ablating element to ablate tissue. In one aspect, the control system delivers energy nearer to the surface of the tissue by changing the frequency or power. In another aspect, the ablating element delivers focused ultrasound which is focused in at least one dimension. The ablating device may also have a number of ablating elements with different characteristics such as focal length.
    Type: Grant
    Filed: October 27, 2000
    Date of Patent: October 19, 2004
    Assignee: Epicor Medical, inc.
    Inventors: Benjamin Pless, Scott C. Anderson, Jonathan L. Podmore, Matthias Vaska, John E. Crowe, Roxanne L. Richman, Timothy Ciciarelli, David A. Gallup, Jack E. Ulstad, Jr.
  • Patent number: 6805128
    Abstract: A control system alters one or more characteristics of an ablating element to ablate tissue. In one aspect, the control system delivers energy nearer to the surface of the tissue by changing the frequency or power. In another aspect, the ablating element delivers focused ultrasound which is focused in at least one dimension. The ablating device may also have a number of ablating elements with different characteristics such as focal length.
    Type: Grant
    Filed: July 12, 2000
    Date of Patent: October 19, 2004
    Assignee: Epicor Medical, Inc.
    Inventors: Benjamin Pless, Scott C. Anderson, Jonathan L. Podmore, Matthias Vaska, John E. Crowe, Roxanne L. Richman, Timothy Ciciarelli, David A. Gallup, Jack E. Ulstad, Jr.
  • Publication number: 20040167550
    Abstract: An integrated anastomosis tool both creates an opening in a side wall of a target blood vessel and performs an anastomosis procedure to connect a graft vessel to a side of the target blood vessel with a single integrated tool. The integrated anastomosis tool includes a cutting device, a graft vessel attachment device, an introducer, and a tool body. In each of the embodiments of the anastomosis tool, the advancement paths of a cutting device and a graft vessel attachment device cross, intersect, or align so that both the cutting device and the graft vessel attachment device can be operated by a single tool at the same intended anastomosis site in a sequential manner. The anastomosis procedure can be performed on a pressurized vessel since there is no need to interchange tools during the procedure.
    Type: Application
    Filed: February 27, 2004
    Publication date: August 26, 2004
    Applicant: Cardica, Inc.
    Inventors: Brendan M. Donohoe, Jaime Vargas, Stephen A. Yencho, James T. Nielsen, Theodore M. Bender, Michael Hendricksen, Scott C. Anderson
  • Publication number: 20040098011
    Abstract: A tissue punch for creating a hole in the wall of a target blood vessel for receiving an anastomosis device includes a piercing element for penetrating the tissue and a cutting element for cutting a plug of tissue around the pierced hole. The tissue punch includes a trocar for inserting the piercing element. After punching is complete, the piercing element is removed from the trocar through a side wall of the trocar so that a medical device can be deployed through the trocar lumen. The tissue punch may also include a tissue trap for trapping the plug of tissue.
    Type: Application
    Filed: October 31, 2003
    Publication date: May 20, 2004
    Applicant: Cardica, Inc.
    Inventors: Jaime Vargas, Brendan M. Donohoe, Scott C. Anderson, Theodore Bender, Stephen Yencho, Bernard Hausen, Michael Hendricksen, James T. Nielsen
  • Publication number: 20040087872
    Abstract: Surgical devices include a selectively cutting and atraumatic distal tip that is configured to assume a first configuration in which cutting surface or surfaces thereof are effective to cut tissue and a second configuration in which the cutting surface or surfaces thereof are ineffective to cut tissue.
    Type: Application
    Filed: November 6, 2002
    Publication date: May 6, 2004
    Applicant: RUBICOR MEDICAL, INC.
    Inventors: Scott C. Anderson, Daniel M. Brounstein, Ary S. Chernomorsky, Mark J. Clifford, James W. Vetter
  • Publication number: 20040077971
    Abstract: A needle is used to mark a tissue area of interest. The needle may have one or more indicators which indicate selected angular orientations relative to the needle. The indicators may also be coupled to anchors which are deployed in the tissue to anchor the needle in the tissue. The needle may be positioned to guide an excisional device to remove tissue.
    Type: Application
    Filed: October 16, 2002
    Publication date: April 22, 2004
    Applicant: RUBICOR MEDICAL, INC.
    Inventors: James W. Vetter, Scott C. Anderson, Jordan S. Tuttle, Daniel M. Brounstein
  • Publication number: 20040073248
    Abstract: A tissue punch for creating a hole in the wall of a target blood vessel for receiving an anastomosis device includes a piercing element for penetrating the tissue and a cutting element for cutting a plug of tissue around the pierced hole. The tissue punch includes a trocar for inserting the piercing element. After punching is complete, the piercing element is removed from the trocar through a side wall of the trocar so that a medical device can be deployed through the trocar lumen. The tissue punch may also include a tissue trap for trapping the plug of tissue.
    Type: Application
    Filed: October 31, 2003
    Publication date: April 15, 2004
    Applicant: Cardica, Inc.
    Inventors: Jaime Vargas, Brendan M. Donohoe, Scott C. Anderson, Theodore Bender, Stephen Yencho, Bernard Hausen, Michael Hendricksen, James T. Nielsen
  • Patent number: 6719769
    Abstract: An integrated anastomosis tool both creates an opening in a side wall of a target blood vessel and performs an anastomosis procedure to connect a graft vessel to a side of the target blood vessel with a single integrated tool. The integrated anastomosis tool includes a cutting device, a graft vessel attachment device, an introducer, and a tool body. In each of the embodiments of the anastomosis tool, the advancement paths of a cutting device and a graft vessel attachment device cross, intersect, or align so that both the cutting device and the graft vessel attachment device can be operated by a single tool at the same intended anastomosis site in a sequential manner. The anastomosis procedure can be performed on a pressurized vessel since there is no need to interchange tools during the procedure.
    Type: Grant
    Filed: December 5, 2001
    Date of Patent: April 13, 2004
    Assignee: Cardica, Inc.
    Inventors: Brendan M. Donohoe, Jaime Vargas, Stephen A. Yencho, James T. Nielsen, Theodore M. Bender, Michael Hendricksen, Scott C. Anderson
  • Patent number: 6719755
    Abstract: An ablating device has a cover which holds an interface material such as a gel. The cover contains the interface material during initial placement of the device. The ablating device may also have a removable tip or a membrane filled with fluid. In still another aspect, the ablating device may be submerged in liquid during operation.
    Type: Grant
    Filed: June 19, 2001
    Date of Patent: April 13, 2004
    Assignee: Epicor Medical, Inc.
    Inventors: John W. Sliwa, Jr., Matthias Vaska, Jonathan L. Podmore, Roxanne L. Richman, Scott C. Anderson, Gerard Champsaur, John E. Crowe
  • Patent number: 6701931
    Abstract: An ablating device has a cover which holds an interface material such as a gel. The cover contains the interface material during initial placement of the device. The ablating device may also have a removable tip or a membrane filled with fluid. In still another aspect, the ablating device may be submerged in liquid during operation.
    Type: Grant
    Filed: December 5, 2001
    Date of Patent: March 9, 2004
    Assignee: Epicor Medical, Inc.
    Inventors: John W. Sliwa, Jr., Matthias Vaska, Jonathan L. Podmore, Roxanne L. Richman, Scott C. Anderson, Gerard Champsaur, John E. Crowe
  • Patent number: 6689128
    Abstract: An ablating device has a cover which holds an interface material such as a gel. The cover contains the interface material during initial placement of the device. The ablating device may also have a removable tip or a membrane filled with fluid. In still another aspect, the ablating device may be submerged in liquid during operation.
    Type: Grant
    Filed: December 5, 2001
    Date of Patent: February 10, 2004
    Assignee: Epicor Medical, Inc.
    Inventors: John W. Sliwa, Jr., Matthias Vaska, Jonathan L. Podmore, Roxanne L. Richman, Scott C. Anderson, Gerard Champsaur, John E. Crowe
  • Publication number: 20040006355
    Abstract: Devices and methods for cutting and collecting a specimen from a mass of tissue. The device may include an integrated cut and collect assembly. The integrated cut and collect assembly includes a cutting portion and a collection portion that includes a flexible membrane. The collection portion of the assembly is attached to the cutting portion thereof. The cutting portion is configured to cut the specimen from the mass of tissue and the collection portion is configured to collect the cut specimen and to encapsulate and isolate the cut specimen within the membrane to enable its safe retraction from the mass of tissue.
    Type: Application
    Filed: July 3, 2002
    Publication date: January 8, 2004
    Applicant: RUBICOR MEDICAL, INC.
    Inventors: James W. Vetter, Ary S. Chernomorsky, Mark J. Clifford, Dan Brounstein, Scott C. Anderson
  • Publication number: 20040006338
    Abstract: Devices and methods for cutting and collecting a specimen from a mass of tissue. The device may include an integrated cut and collect assembly. The integrated cut and collect assembly includes a cutting portion and a collection portion that includes a flexible membrane. The collection portion of the assembly is attached to the cutting portion thereof. The cutting portion is configured to cut the specimen from the mass of tissue and the collection portion is configured to collect the cut specimen and to encapsulate and isolate the cut specimen within the membrane to enable its safe retraction from the mass of tissue.
    Type: Application
    Filed: October 16, 2002
    Publication date: January 8, 2004
    Applicant: RUBICOR MEDICAL, INC.
    Inventors: James W. Vetter, Ary S. Chernomorsky, Mark J. Clifford, Dan Brounstein, Scott C. Anderson
  • Patent number: 6673088
    Abstract: A tissue punch for creating a hole in the wall of a target blood vessel for receiving an anastomosis device includes a piercing element for penetrating the tissue and a cutting element for cutting a plug of tissue around the pierced hole. The tissue punch includes a trocar for inserting the piercing element. After punching is complete, the piercing element is removed from the trocar through a side wall of the trocar so that a medical device can be deployed through the trocar lumen. The tissue punch may also include a tissue trap for trapping the plug of tissue.
    Type: Grant
    Filed: April 4, 2000
    Date of Patent: January 6, 2004
    Assignee: Cardica, Inc.
    Inventors: Jaime Vargas, Brendan M. Donohoe, Scott C. Anderson, Theodore Bender, Stephen Yencho, Bernard Hausen, Michael Hendricksen, James T. Nielsen
  • Patent number: 6645202
    Abstract: A control system alters one or more characteristics of an ablating element to ablate tissue. In one aspect, the control system delivers energy nearer to the surface of the tissue by changing the frequency or power. In another aspect, the ablating element delivers focused ultrasound which is focused in at least one dimension. The ablating device may also have a number of ablating elements with different characteristics such as focal length.
    Type: Grant
    Filed: October 27, 2000
    Date of Patent: November 11, 2003
    Assignee: Epicor Medical, Inc.
    Inventors: Benjamin Pless, Scott C. Anderson, Jonathan L. Podmore, Matthias Vaska, John E. Crowe, Roxanne L. Richman, Timothy Ciciarelli, David A. Gallup, Jack E. Ulstad, Jr.
  • Patent number: D487406
    Type: Grant
    Filed: April 24, 2003
    Date of Patent: March 9, 2004
    Inventor: Scott C. Anderson