Patents by Inventor Scott C. Best

Scott C. Best has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200209911
    Abstract: A memory controller having a data receiver to sample data at a sample timing using a strobe signal, wherein the data and the strobe signal are sent by a memory device in connection with a read operation initiated by the memory controller, and a strobe receiver to receive the strobe signal, wherein a phase of the strobe signal has a drift relative to a reference by an amount. The memory controller further having a monitoring circuit to monitor the strobe signal and determine the amount of the drift, and an adjustment circuit to update the sample timing of the data receiver based on the amount of drift determined by the monitoring signal.
    Type: Application
    Filed: December 9, 2019
    Publication date: July 2, 2020
    Inventors: Scott C. Best, Abhijit M. Abhyankar, Kun-Yung Chang, Frank Lambrecht
  • Patent number: 10699769
    Abstract: A memory controller receives data and phase-providing signals from a memory device. The phase-providing signal is not a clock signal, but is used by the memory controller to phase align a local data-sampling signal with the incoming data. The memory controller samples the data signal with the data-sampling signal. The memory controller can perform maintenance operations to update the phase relationship between the phase-providing and data-sampling signals.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: June 30, 2020
    Assignee: Rambus Inc.
    Inventors: Scott C. Best, Richard E. Warmke, David B. Roberts, Frank Lambrecht
  • Publication number: 20200192637
    Abstract: The embodiments described herein describe technologies of self-timed pattern generators. The self-timed pattern generators can be used to form a random number generator to generate a random digital value. Asynchronous digital logic in a first generator asynchronously updates a next state based on a current state, a second state of a second generator that is before the first generator in the chain or ring topology, and a third state of a third generator that is after the first generator in the chain or ring topology. The self-timed pattern generators are to output a random digital value based at least in part on the current state output from the first generator.
    Type: Application
    Filed: December 9, 2019
    Publication date: June 18, 2020
    Inventor: Scott C. Best
  • Publication number: 20200185009
    Abstract: In a data transmission system, one or more signal supply voltages for generating the signaling voltage of a signal to be transmitted are generated in a first circuit and forwarded from the first circuit to a second circuit. The second circuit may use the forwarded signal supply voltages to generate another signal to be transmitted back from the second circuit to the first circuit, thereby obviating the need to generate signal supply voltages separately in the second circuit. The first circuit may also adjust the signal supply voltages based on the signal transmitted back from the second circuit to the first circuit. The data transmission system may employ a single-ended signaling system in which the signaling voltage is referenced to a reference voltage that is a power supply voltage such as ground, shared by the first circuit and the second circuit.
    Type: Application
    Filed: November 26, 2019
    Publication date: June 11, 2020
    Inventors: Scott C. BEST, John W. POULTON
  • Publication number: 20200117627
    Abstract: This application is directed to a stacked semiconductor device assembly including a plurality of identical stacked integrated circuit (IC) devices. Each IC device further includes a master interface, a channel master circuit, a slave interface, a channel slave circuit, a memory core, and a modal pad configured to receive a selection signal for the IC device to communicate data using one of its channel master circuit or its channel slave circuit. In some implementations, the IC devices include a first IC device and one or more second IC devices. In accordance with the selection signal, the first IC device is configured to communicate read/write data via the channel master circuit of the first IC device, and each of the one or more second IC devices is configured to communicate respective read/write data via the channel slave circuit of the respective second IC device.
    Type: Application
    Filed: October 14, 2019
    Publication date: April 16, 2020
    Inventor: Scott C. Best
  • Publication number: 20200110556
    Abstract: A memory module with multiple memory devices includes a buffer system that manages communication between a memory controller and the memory devices. The memory module additionally includes a command input port to receive command and address signals from a controller and, also in support of capacity extensions, a command relay circuit coupled to the command port to convey the commands and addresses from the memory module to another module or modules. Relaying commands and addresses introduces a delay, and the buffer system that manages communication between the memory controller and the memory devices can be configured to time data communication to account for that delay.
    Type: Application
    Filed: October 11, 2019
    Publication date: April 9, 2020
    Inventors: Frederick A. Ware, Scott C. Best
  • Publication number: 20200105335
    Abstract: The embodiments described herein describe technologies for using the memory modules in different modes of operation, such as in a standard multi-drop mode or as in a dynamic point-to-point (DPP) mode (also referred to herein as an enhanced mode). The memory modules can also be inserted in the sockets of the memory system in different configurations.
    Type: Application
    Filed: October 18, 2019
    Publication date: April 2, 2020
    Inventors: Frederick A. Ware, Suresh Rajan, Scott C. Best
  • Patent number: 10607691
    Abstract: A memory is disclosed that includes a logic die having first and second memory interface circuits. A first memory die is stacked with the logic die, and includes first and second memory arrays. The first memory array couples to the first memory interface circuit. The second memory array couples to the second interface circuit. A second memory die is stacked with the logic die and the first memory die. The second memory die includes third and fourth memory arrays. The third memory array couples to the first memory interface circuit. The fourth memory array couples to the second memory interface circuit. Accesses to the first and third memory arrays are carried out independently from accesses to the second and fourth memory arrays.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: March 31, 2020
    Assignee: Rambus Inc.
    Inventors: Scott C. Best, Ming Li
  • Publication number: 20200076622
    Abstract: A physically unclonable function circuit (PUF) is used to generate a fingerprint value based on the uniqueness of the physical characteristics (e.g., resistance, capacitance, connectivity, etc.) of a tamper prevention (i.e., shielding) structure that includes through-silicon vias and metallization on the backside of the integrated circuit. The physical characteristics depend on random physical factors introduced during manufacturing. This causes the chip-to-chip variations in these physical characteristics to be unpredictable and uncontrollable which makes more difficult to duplicate, clone, or modify the structure without changing the fingerprint value. By including the through-silicon vias and metallization on the backside of the integrated circuit as part of the PUF, the backside of the chip can be protected from modifications that can be used to help learn the secure cryptographic keys and/or circumvent the secure cryptographic (or other) circuitry.
    Type: Application
    Filed: November 30, 2017
    Publication date: March 5, 2020
    Inventor: Scott C. BEST
  • Publication number: 20200042233
    Abstract: A buffer circuit includes a primary interface, a secondary interface, and an encoder/decoder circuit. The primary interface is configured to communicate on an n-bit channel, wherein n parallel bits on the n-bit channel are coded using data bit inversion (DBI). The secondary interface is configured to communicate with a plurality of integrated circuit devices on a plurality of m-bit channels, each m-bit channel transmitting m parallel bits without using DBI. And the encoder/decoder circuit is configured to translate data words between the n-bit channel of the primary interface and the plurality of m-bit channels of the secondary interface.
    Type: Application
    Filed: August 19, 2019
    Publication date: February 6, 2020
    Inventor: Scott C. Best
  • Publication number: 20200035323
    Abstract: A buffer circuit is disclosed. The buffer circuit includes a command address (C/A) interface to receive an incoming activate (ACT) command and an incoming column address strobe (CAS) command. A first match circuit includes first storage to store failure row address information associated with the memory, and first compare logic. The first compare logic is responsive to the ACT command, to compare incoming row address information to the stored failure row address information. A second match circuit includes second storage to store failure column address information associated with the memory, and second compare logic. The second compare logic is responsive to the CAS command, to compare the incoming column address information to the stored failure column address information. Gating logic maintains a state of a matching row address identified by the first compare logic during the comparison carried out by the second compare logic.
    Type: Application
    Filed: August 9, 2019
    Publication date: January 30, 2020
    Inventors: Scott C. Best, John Eric Linstadt, Paul William Roukema
  • Patent number: 10522194
    Abstract: In a data transmission system, one or more signal supply voltages for generating the signaling voltage of a signal to be transmitted are generated in a first circuit and forwarded from the first circuit to a second circuit. The second circuit may use the forwarded signal supply voltages to generate another signal to be transmitted back from the second circuit to the first circuit, thereby obviating the need to generate signal supply voltages separately in the second circuit. The first circuit may also adjust the signal supply voltages based on the signal transmitted back from the second circuit to the first circuit. The data transmission system may employ a single-ended signaling system in which the signaling voltage is referenced to a reference voltage that is a power supply voltage such as ground, shared by the first circuit and the second circuit.
    Type: Grant
    Filed: October 1, 2018
    Date of Patent: December 31, 2019
    Assignee: Rambus Inc.
    Inventors: Scott C. Best, John W. Poulton
  • Publication number: 20190378560
    Abstract: A memory system includes dynamic random-access memory (DRAM) components that include interconnected and redundant component data interfaces. The redundant interfaces facilitate memory interconnect topologies that accommodate considerably more DRAM components per memory channel than do traditional memory systems, and thus offer considerably more memory capacity per channel, without concomitant reductions in signaling speeds. Each DRAM component includes multiplexers that allow either of the data interfaces to write data to or read data from a common set of memory banks, and to selectively relay write and read data to and from other components, bypassing the local banks. Delay elements can impose selected read/write delays to align read and write transactions from and to disparate DRAM components.
    Type: Application
    Filed: July 3, 2019
    Publication date: December 12, 2019
    Inventors: Frederick A. WARE, Ely K. TSERN, John E. LINSTADT, Thomas J. GIOVANNINI, Scott C. BEST, Kenneth L. WRIGHT
  • Patent number: 10503201
    Abstract: A memory controller having a data receiver to sample data at a sample timing using a strobe signal, wherein the data and the strobe signal are sent by a memory device in connection with a read operation initiated by the memory controller, and a strobe receiver to receive the strobe signal, wherein a phase of the strobe signal has a drift relative to a reference by an amount. The memory controller further having a monitoring circuit to monitor the strobe signal and determine the amount of the drift, and an adjustment circuit to update the sample timing of the data receiver based on the amount of drift determined by the monitoring signal.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: December 10, 2019
    Assignee: Rambus Inc.
    Inventors: Scott C. Best, Abhijit M. Abhyankar, Kun-Yung Chang, Frank Lambrecht
  • Patent number: 10503476
    Abstract: The embodiments described herein describe technologies of self-timed pattern generators. The self-timed pattern generators can be used to form a random number generator to generate a random digital value. Asynchronous digital logic in a first generator asynchronously updates a next state based on a current state, a second state of a second generator that is before the first generator in the chain or ring topology, and a third state of a third generator that is after the first generator in the chain or ring topology. The self-timed pattern generators are to output a random digital value based at least in part on the current state output from the first generator.
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: December 10, 2019
    Assignee: Cryptography Research, Inc.
    Inventor: Scott C. Best
  • Publication number: 20190370191
    Abstract: A first non-volatile memory may store first data and a second non-volatile memory may store second data. An authentication component may be coupled with the first non-volatile memory and the second non-volatile memory and may receive a request to perform an authentication operation. In response to the request to perform the authentication operation, the authentication component may access the first data stored at the first non-volatile memory and the second data stored at the second non-volatile memory and determine whether the second data stored at the second non-volatile memory has become unreliable based on a memory disturbance condition. In response to determining that the second data stored at the second non-volatile memory has become unreliable, a corrective action associated with the first data stored at the first non-volatile memory may be performed.
    Type: Application
    Filed: May 23, 2019
    Publication date: December 5, 2019
    Inventors: Scott C. Best, Brent S. Haukness, Carl W. Werner
  • Patent number: 10481973
    Abstract: A memory module is disclosed. The memory module includes a substrate, and respective first, second and third memory devices. The first memory device is of a first type disposed on the substrate and has addressable storage locations. The second memory device is also of the first type, and includes storage cells dedicated to store failure address information associated with defective storage locations in the first memory device. The third memory device is of the first type and includes storage cells dedicated to substitute as storage locations for the defective storage locations.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: November 19, 2019
    Assignee: Rambus Inc.
    Inventors: Frederick A. Ware, Brent S. Haukness, John Eric Linstadt, Scott C. Best
  • Patent number: 10459660
    Abstract: A memory module with multiple memory devices includes a buffer system that manages communication between a memory controller and the memory devices. The memory module additionally includes a command input port to receive command and address signals from a controller and, also in support of capacity extensions, a command relay circuit coupled to the command port to convey the commands and addresses from the memory module to another module or modules. Relaying commands and addresses introduces a delay, and the buffer system that manages communication between the memory controller and the memory devices can be configured to time data communication to account for that delay.
    Type: Grant
    Filed: November 4, 2015
    Date of Patent: October 29, 2019
    Assignee: Rambus Inc.
    Inventors: Frederick A. Ware, Scott C. Best
  • Patent number: 10453517
    Abstract: The embodiments described herein describe technologies for using the memory modules in different modes of operation, such as in a standard multi-drop mode or as in a dynamic point-to-point (DPP) mode (also referred to herein as an enhanced mode). The memory modules can also be inserted in the sockets of the memory system in different configurations.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: October 22, 2019
    Assignee: Rambus Inc.
    Inventors: Frederick A. Ware, Suresh Rajan, Scott C. Best
  • Patent number: 10445269
    Abstract: This application is directed to a stacked semiconductor device assembly including a plurality of identical stacked integrated circuit (IC) devices. Each IC device further includes a master interface, a channel master circuit, a slave interface, a channel slave circuit, a memory core, and a modal pad configured to receive a selection signal for the IC device to communicate data using one of its channel master circuit or its channel slave circuit. In some implementations, the IC devices include a first IC device and one or more second IC devices. In accordance with the selection signal, the first IC device is configured to communicate read/write data via the channel master circuit of the first IC device, and each of the one or more second IC devices is configured to communicate respective read/write data via the channel slave circuit of the respective second IC device.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: October 15, 2019
    Assignee: RAMBUS INC.
    Inventor: Scott C. Best