Patents by Inventor Scott Constable

Scott Constable has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240095063
    Abstract: Techniques for improving exception-based invocation of instrumentation handler programs include executing, by a processor, an interrupt instruction of an instrumented program, the interrupt instruction having an interrupt number; searching for the interrupt number in an interrupt table; and in response to the interrupt number being found in the interrupt table, saving an address of a next instruction of the instrumented program after the interrupt instruction as a return address, determining a destination address, in an interrupt destination table, of a beginning of an instrumentation handler program associated with the interrupt number and transferring control of the instrumented program to the instrumentation handler program at the destination address.
    Type: Application
    Filed: September 21, 2022
    Publication date: March 21, 2024
    Applicant: Intel Corporation
    Inventors: Michael LeMay, Scott Constable, David M. Durham
  • Publication number: 20240004659
    Abstract: Techniques for an instruction for a Runtime Call operation are described. An example apparatus comprises decoder circuitry to decode a single instruction, the single instruction to include a field for an identifier of an opcode, the opcode to indicate execution circuitry is to execute a no operation when a runtime call destination equals a predetermined value; and execute an indirect call with the runtime call destination as a destination address when the runtime call destination does not equal the predetermined value. Other examples are described and claimed.
    Type: Application
    Filed: June 29, 2022
    Publication date: January 4, 2024
    Applicant: Intel Corporation
    Inventors: Michael LeMay, Dan Baum, Joseph Cihula, Joao Batista Correa Gomes Moreira, Anjo Lucas Vahldiek-Oberwagner, Scott Constable, Andreas Kleen, Konrad Lai, Henrique de Medeiros Kawakami, David M. Durham
  • Publication number: 20230409699
    Abstract: Detailed herein are examples of determining when to allow access to a trusted execution environment (TEE). For example, using TEE logic associated with software to at least in part: determine that a TEE feature is supported based at least on a value of a bit position in a data structure; and not allow a TEE entry instruction to access to a TEE when the bit position of the data structure is reserved.
    Type: Application
    Filed: September 20, 2022
    Publication date: December 21, 2023
    Inventors: Scott CONSTABLE, Ilya ALEXANDROVICH, Ittai ANATI, Simon JOHNSON, Vincent SCARLATA, Mona VIJ, Yuan XIAO, Bin XING, Krystof SMUDZINSKI
  • Publication number: 20230350814
    Abstract: Techniques and mechanisms for a victim cache to operate in conjunction with another cache to help mitigate the risk of a side-channel attack. In an embodiment, a first line is evicted from a primary cache, and moved to a victim cache, based on a message indicating that a second line is to be stored to the primary cache. The victim cache is accessed using an independently randomized mapping. Subsequently, a request to access the first line results in a search of the victim cache and the primary cache. Based on the search, the first line is evicted from the victim cache, and reinserted in the primary cache. In another embodiment, reinsertion of the first line in the primary cache includes the first line and a third line being swapped between the primary cache and the victim cache.
    Type: Application
    Filed: December 9, 2022
    Publication date: November 2, 2023
    Applicant: Intel Corporation
    Inventors: Thomas Unterluggauer, Fangfei Liu, Carlos Rozas, Scott Constable, Gilles Pokam, Francis McKeen, Christopher Wilkerson, Erik Hallnor
  • Publication number: 20230205869
    Abstract: Systems, methods, and apparatuses relating efficient exception handling in trusted execution environments are described. In an embodiment, a hardware processor includes a register, a decoder, and execution circuitry. The register has a field to be set to enable an architecturally protected execution environment at one of a plurality of contexts for code in an architecturally protected enclave in memory. The decoder is to decode an instruction having a format including a field for an opcode, the opcode to indicate that the execution circuitry is to perform a context change. The execution circuitry is to perform one or more operations corresponding to the instruction, the one or more operations including changing, within the architecturally protected enclave, from a first context to a second context.
    Type: Application
    Filed: December 23, 2021
    Publication date: June 29, 2023
    Applicant: Intel Corporation
    Inventors: Scott Constable, Bin Xing, Yuan Xiao, Krystof Zmudzinski, Mona Vij, Mark Shanahan, Francis McKeen, Ittai Anati
  • Publication number: 20220214881
    Abstract: Techniques for ratchet pointers in computing hardware are described. The technology includes a memory to store an object referenced by a ratchet pointer, and a processor to provide access to a slice of the object by decrypting a base address and a limit of the ratchet pointer, generating a cryptographic address in an encrypted format bound to an identity of the object and not the slice; and performing effective address generation for the cryptographic address based at least in part on the base address and the limit.
    Type: Application
    Filed: March 16, 2022
    Publication date: July 7, 2022
    Applicant: Intel Corporation
    Inventors: Michael LeMay, Hans Goran Liljestrand, Peiming Liu, David M. Durham, Scott Constable
  • Publication number: 20220207147
    Abstract: Embodiments for dynamically mitigating speculation vulnerabilities are disclosed. In an embodiment, an apparatus includes decode circuitry and execution circuitry coupled to the decode circuitry. The decode circuitry is to decode a register hardening instruction to mitigate vulnerability to a speculative execution attack. The execution circuitry is to be hardened in response to the register hardening instruction.
    Type: Application
    Filed: December 26, 2020
    Publication date: June 30, 2022
    Applicant: Intel Corporation
    Inventors: Carlos Rozas, Fangfei Liu, Xiang Zou, Francis McKeen, Jason W. Brandt, Joseph Nuzman, Alaa Alameldeen, Abhishek Basak, Scott Constable, Thomas Unterluggauer, Asit Mallick, Matthew Fernandez
  • Publication number: 20220207187
    Abstract: Systems, methods, and apparatuses relating to an instruction that allows a trusted execution environment to react to an asynchronous exit are described. In one embodiment, a hardware processor includes a register comprising a field, that when set, is to enable an architecturally protected execution environment for code in an architecturally protected enclave in memory, a decoder circuit to decode a single instruction comprising an opcode into a decoded instruction, the opcode to indicate an execution circuit is to invoke a handler to handle an asynchronous exit from execution of the code in the architecturally protected enclave and then resume execution of the code in the architecturally protected enclave from where the asynchronous exit occurred, and the execution circuit to respond to the decoded instruction as specified by the opcode.
    Type: Application
    Filed: December 26, 2020
    Publication date: June 30, 2022
    Inventors: SCOTT CONSTABLE, MARK SHANAHAN, MONA VIJ, BIN XING, KRYSTOF ZMUDZINSKI
  • Publication number: 20220206818
    Abstract: Embodiments for dynamically mitigating speculation vulnerabilities are disclosed. In an embodiment, an apparatus includes decode circuitry and execution circuitry coupled to the decode circuitry. The decode circuitry is to decode a single instruction to mitigate vulnerability to a speculative execution attack. The execution circuitry is to be hardened in response to the single instruction.
    Type: Application
    Filed: December 26, 2020
    Publication date: June 30, 2022
    Applicant: Intel Corporation
    Inventors: Alaa Alameldeen, Carlos Rozas, Fangfei Liu, Xiang Zou, Francis McKeen, Jason W. Brandt, Joseph Nuzman, Abhishek Basak, Scott Constable, Thomas Unterluggauer, Asit Mallick, Matthew Fernandez
  • Publication number: 20220207146
    Abstract: Embodiments for dynamically mitigating speculation vulnerabilities are disclosed. In an embodiment, an apparatus includes decode circuitry and load circuitry coupled to the decode circuitry. The decode circuitry is to decode a load hardening instruction to mitigate vulnerability to a speculative execution attack. The load circuitry is to be hardened in response to the load hardening instruction.
    Type: Application
    Filed: December 26, 2020
    Publication date: June 30, 2022
    Applicant: Intel Corporation
    Inventors: Carlos Rozas, Fangfei Liu, Xiang Zou, Francis McKeen, Jason W. Brandt, Joseph Nuzman, Alaa Alameldeen, Abhishek Basak, Scott Constable, Thomas Unterluggauer, Asit Mallick, Matthew Fernandez
  • Publication number: 20220207148
    Abstract: Embodiments for dynamically mitigating speculation vulnerabilities are disclosed. In an embodiment, an apparatus includes decode circuitry and branch circuitry coupled to the decode circuitry. The decode circuitry is to decode a branch hardening instruction to mitigate vulnerability to a speculative execution attack. The branch circuitry is to be hardened in response to the branch hardening instruction.
    Type: Application
    Filed: December 26, 2020
    Publication date: June 30, 2022
    Applicant: Intel Corporation
    Inventors: Carlos Rozas, Fangfei Liu, Xiang Zou, Francis McKeen, Jason W. Brandt, Joseph Nuzman, Alaa Alameldeen, Abhishek Basak, Scott Constable, Thomas Unterluggauer, Asit Mallick, Matthew Fernandez
  • Publication number: 20220207138
    Abstract: Embodiments for dynamically mitigating speculation vulnerabilities are disclosed. In an embodiment, an apparatus includes a decode circuitry and store circuitry coupled to the decode circuitry. The decode circuitry is to decode a store hardening instruction to mitigate vulnerability to a speculative execution attack. The store circuitry is to be hardened in response to the store hardening instruction.
    Type: Application
    Filed: December 26, 2020
    Publication date: June 30, 2022
    Applicant: Intel Corporation
    Inventors: Carlos Rozas, Fangfei Liu, Xiang Zou, Francis McKeen, Jason W. Brandt, Joseph Nuzman, Alaa Alameldeen, Abhishek Basak, Scott Constable, Thomas Unterluggauer, Asit Mallick, Matthew Fernandez
  • Publication number: 20220206814
    Abstract: Techniques for borrow checking in hardware are described. The technology includes allocating an object in a memory and setting an ownership identifier (ID) in the allocated object, the allocated object being associated with a first variable in a program and setting a matching ownership ID in a pointer to the allocated object. When the allocated object is accessed during execution of the program by a processor, an exception is generated when the ownership ID in the allocated object does not match the ownership ID in the pointer, and execution of the program is continued when the ownership ID in the allocated object does match the ownership ID in the pointer.
    Type: Application
    Filed: March 16, 2022
    Publication date: June 30, 2022
    Applicant: Intel Corporation
    Inventors: Michael LeMay, Peiming Liu, David M. Durham, Scott Constable, Kshitij Arun Doshi
  • Publication number: 20220207154
    Abstract: Embodiments for dynamically mitigating speculation vulnerabilities are disclosed. In an embodiment, an apparatus includes a hybrid key generator and memory protection hardware. The hybrid key generator is to generate a hybrid key based on a public key and multiple process identifiers. Each of the process identifiers corresponds to one or more memory spaces in a memory. The memory protection hardware is to use the first hybrid key to protect to the memory spaces.
    Type: Application
    Filed: December 26, 2020
    Publication date: June 30, 2022
    Applicant: Intel Corporation
    Inventors: Richard Winterton, Mohammad Reza Haghighat, Asit Mallick, Alaa Alameldeen, Abhishek Basak, Jason W. Brandt, Michael Chynoweth, Carlos Rozas, Scott Constable, Martin Dixon, Matthew Fernandez, Fangfei Liu, Francis McKeen, Joseph Nuzman, Gilles Pokam, Thomas Unterluggauer, Xiang Zou
  • Publication number: 20220200783
    Abstract: Techniques and mechanisms for a victim cache to operate in conjunction with a skewed cache to help mitigate the risk of a side-channel attack. In an embodiment, a first line is evicted from a skewed cache, and moved to a victim cache, based on a message indicating that a second line is to be stored to the skewed cache. Subsequently, a request to access the first line results in a search of both the victim cache and sets of the skewed cache which have been mapped to an address corresponding to the first line. Based on the search, the first line is evicted from the victim cache, and reinserted in the skewed cache. In another embodiment, reinsertion of the first line in the skewed cache includes the first line and a third line being swapped between the skewed cache and the victim cache.
    Type: Application
    Filed: December 18, 2020
    Publication date: June 23, 2022
    Applicant: Intel Corporation
    Inventors: Thomas Unterluggauer, Alaa Alameldeen, Scott Constable, Fangfei Liu, Francis McKeen, Carlos Rozas, Anna Trikalinou
  • Publication number: 20220091851
    Abstract: In one embodiment, a processor includes: a decode circuit to decode a load instruction that is to load an operand to a destination register, the decode circuit to generate at least one fencing micro-operation (?op) associated with the destination register; and a scheduler circuit coupled to the decode circuit. The scheduler circuit is to prevent speculative execution of one or more instructions that consume the operand in response to the at least one fencing ?op. Other embodiments are described and claimed.
    Type: Application
    Filed: September 23, 2020
    Publication date: March 24, 2022
    Inventors: FANGFEI LIU, ALAA ALAMELDEEN, ABHISHEK BASAK, SCOTT CONSTABLE, FRANCIS MCKEEN, JOSEPH NUZMAN, CARLOS ROZAS, THOMAS UNTERLUGGAUER, XIANG ZOU
  • Publication number: 20220083347
    Abstract: A method comprises receiving an instruction to resume operations of an enclave in a cloud computing environment and generating a pseud-random time delay before resuming operations of the enclave in the cloud computing environment.
    Type: Application
    Filed: September 14, 2020
    Publication date: March 17, 2022
    Applicant: Intel Corporation
    Inventors: Scott Constable, Bin Xing, Fangfei Liu, Thomas Unterluggauer, Krystof Zmudzinski
  • Publication number: 20220012369
    Abstract: In one embodiment, an apparatus comprises a processing circuitry to detect an occurrence of at least one of a single-stepping event or a zero-stepping event in an execution thread on an architecturally protected enclave and in response to the occurrence, implement at least one mitigation process to inhibit further occurrences of the at least one of a single-stepping event or a zero-stepping event in the architecturally protected enclave.
    Type: Application
    Filed: September 24, 2021
    Publication date: January 13, 2022
    Applicant: Intel Corporation
    Inventors: Scott Constable, Yuan Xiao, Bin Xing, Mona Vij, Mark Shanahan
  • Publication number: 20210081332
    Abstract: Systems, apparatuses and methods provide for technology that determines that first data associated with a first security domain is to be stored in a first permutated cache set, where the first permuted cache set is identified based on a permutation function that permutes at least one of a plurality of first cache indexes. The technology further determines that second data associated with a second security domain is to be stored in a second permutated cache set, where the second permuted cache set is identified based on the permutation function. The second permutated cache set may intersect the first permutated cache set at one data cache line to cause an eviction of first data associated with the first security domain from the one data cache line and bypass eviction of data associated with the first security domain from at least one other data cache line of the first permuted cache set.
    Type: Application
    Filed: September 25, 2020
    Publication date: March 18, 2021
    Inventors: Scott Constable, Thomas Unterluggauer
  • Publication number: 20200409711
    Abstract: Detailed herein are systems, apparatuses, and methods for a computer architecture with instruction set support to mitigate against page fault and/or cache-based side-channel attacks. In an embodiment, a processor includes a decoder to decode an instruction into a decoded instruction, the instruction comprising a first field that indicates an instruction pointer to a user-level event handler; and an execution unit to execute the decoded instruction to, after a swap of an instruction pointer that indicates where an event occurred from a current instruction pointer register into a user-level event handler pointer register, push the instruction pointer that indicates where the event occurred onto call stack storage, and change a current instruction pointer in the current instruction pointer register to the instruction pointer to the user-level event handler.
    Type: Application
    Filed: June 29, 2019
    Publication date: December 31, 2020
    Inventors: Scott Constable, Fangfei Liu, Bin Xing, Michael Steiner, Mona Vij, Carlos Rozas, Francis X. McKeen, Meltem Ozsoy, Matthew Fernandez, Krystof Zmudzinski, Mark Shanahan