Patents by Inventor Scott Daniel Nelson

Scott Daniel Nelson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11358615
    Abstract: A system and method includes determining, with a sensor assembly disposed onboard a first aerial vehicle, a direction in which a fluid flows within or through the first aerial vehicle, and determining an orientation of the first aerial vehicle relative to a second aerial vehicle based at least in part on the direction in which the fluid flows within or through the first aerial vehicle.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: June 14, 2022
    Assignee: GE Global Sourcing LLC
    Inventors: Eugene Smith, Mark Bradshaw Kraeling, Michael Scott Miner, Shannon Joseph Clouse, Anwarul Azam, Matthew Lawrence Blair, Nidhi Naithani, Dattaraj Jagdish Rao, Anju Bind, Sreyashi Dey Chaki, Scott Daniel Nelson, Nikhil Uday Naphade, Wing Yeung Chung, Daniel Malachi Ballesty, Glenn Robert Shaffer, Jeffrey James Kisak, Dale Martin DiDomenico, Shawn Arthur McClintic, David Peltz
  • Publication number: 20220063689
    Abstract: System includes a controller configured to obtain one or more of a route parameter or a vehicle parameter from discrete examinations of one or more of a route or a vehicle system. The route parameter is indicative of a health of the route over which the vehicle system travels. The vehicle parameter is indicative of a health of the vehicle system. The discrete examinations of the one or more of the route or the vehicle system separated from each other by one or more of location or time. The controller is configured to examine the one or more of the route parameter or the vehicle parameter to determine whether the one or more of the route or the vehicle system is damaged. The system also includes examination equipment configured to continually monitor the one or more of the route or the vehicle system responsive to determining that the one or more of the route or the vehicle is damaged.
    Type: Application
    Filed: November 9, 2021
    Publication date: March 3, 2022
    Inventors: Ajith Kuttannair Kumar, Wolfgang Daum, Martin Paget, Daniel Rush, Brad Thomas Costa, Seneca Snyder, Jerry Duncan, Mark Bradshaw Kraeling, Michael Scott Miner, Shannon Joseph Clouse, Anwarul Azam, Matthew Lawrence Blair, Nidhi Naithani, Dattaraj Jagdish Rao, Anju Bind, Sreyashi Dey Chaki, Scott Daniel Nelson, Nikhil Uday Naphade, Wing Yeung Chung, Daniel Malachi Ballesty, Glenn Robert Shaffer, Jeffrey James Kisak, Dale Martin DiDomenico, Suresh Govindappa, Manibabu Pippalla, Sethu Madhavan, Arunachala Karthik Sridharan, Prabhu Marimuthu, Jared Klineman Cooper, Joseph Forrest Noffsinger, Paul Kenneth Houpt, David Lowell McKay
  • Patent number: 11208129
    Abstract: System includes a controller configured to obtain one or more of a route parameter or a vehicle parameter from discrete examinations of one or more of a route or a vehicle system. The route parameter is indicative of a health of the route over which the vehicle system travels. The vehicle parameter is indicative of a health of the vehicle system. The discrete examinations of the one or more of the route or the vehicle system separated from each other by one or more of location or time. The controller is configured to examine the one or more of the route parameter or the vehicle parameter to determine whether the one or more of the route or the vehicle system is damaged. The system also includes examination equipment configured to continually monitor the one or more of the route or the vehicle system responsive to determining that the one or more of the route or the vehicle is damaged.
    Type: Grant
    Filed: February 14, 2019
    Date of Patent: December 28, 2021
    Assignee: Transportation IP Holdings, LLC
    Inventors: Ajith Kuttannair Kumar, Wolfgang Daum, Martin Paget, Daniel Rush, Brad Thomas Costa, Seneca Snyder, Jerry Duncan, Mark Bradshaw Kraeling, Michael Scott Miner, Shannon Joseph Clouse, Anwarul Azam, Matthew Lawrence Blair, Nidhi Naithani, Dattaraj Jagdish Rao, Anju Bind, Sreyashi Dey Chaki, Scott Daniel Nelson, Nikhil Uday Naphade, Wing Yeung Chung, Daniel Malachi Bellesty, Glenn Robert Shaffer, Jeffrey James Kisak, Dale Martin DiDomenico, Suresh Govindappa, Manibabu Pippalla, Sethu Madhavan, Arunachala Karthik Sridharan, Prabhu Marimuthu, Jared Klineman Cooper, Joseph Forrest Noffsinger, Paul Kenneth Houpt, David Lowell McKay
  • Patent number: 11039055
    Abstract: A camera system and method capture image data with a camera, a data storage device electrically connected to the camera and configured to store the video data and/or a communication device electrically connected to the camera and configured to communicate the image data to a system receiver located remote from the camera. The system receiver may be located onboard a vehicle such that an operator can carry the camera off board the vehicle and communicate the image data back to the vehicle, when performing, for example, work on the vehicle or inspecting the vehicle or the environs of the vehicle.
    Type: Grant
    Filed: September 20, 2018
    Date of Patent: June 15, 2021
    Assignee: TRANSPORTATION IP HOLDINGS, LLC
    Inventors: Mark Bradshaw Kraeling, Michael Scott Miner, Shannon Joseph Clouse, Anwarul Azam, Matthew Lawrence Blair, Nidhi Naithani, Dattaraj Jagdish Rao, Anju Bind, Sreyashi Dey Chaki, Scott Daniel Nelson, Nikhil Uday Naphade, Wing Yeung Chung, Daniel Malachi Ballesty, Glenn Robert Shaffer, Jeffrey James Kisak
  • Patent number: 10997432
    Abstract: A locomotive speed determination system and method receive image data of a field of view of a camera operably disposed onboard a locomotive. A speed and/or heading of the locomotive are determined as the vehicle is moving based at least in part on one or more differences in the image data. In one aspect, pixel intensities in different images or frames may be examined to identify one or more features of interest in the images or frames. Movement of the one or more features of interest in the images or frames is correlated to movement of the locomotive along the route, and the time difference between when the images or frames are obtained can be used to determine the locomotive speed.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: May 4, 2021
    Assignee: TRANSPORTATION IP HOLDINGS, LLC
    Inventors: Dattaraj Jagdish Rao, Scott Daniel Nelson, Nidhi Naithani, Nikhil Uday Naphade
  • Publication number: 20190263430
    Abstract: A system and method includes determining, with a sensor assembly disposed onboard a first aerial vehicle, a direction in which a fluid flows within or through the first aerial vehicle, and determining an orientation of the first aerial vehicle relative to a second aerial vehicle based at least in part on the direction in which the fluid flows within or through the first aerial vehicle.
    Type: Application
    Filed: May 14, 2019
    Publication date: August 29, 2019
    Inventors: Eugene Smith, Ajith Kuttannair Kumar, Wolfgang Daum, Martin Paget, Daniel Rush, Sameh Fahmy, Brad Thomas Costa, Seneca Snyder, Jerry Duncan, Mark Bradshaw Kraeling, Michael Scott Miner, Shannon Joseph Clouse, Anwarul Azam, Matthew Lawrence Blair, Nidhi Naithani, Dattaraj Jagdish Rao, Anju Bind, Sreyashi Dey Chaki, Scott Daniel Nelson, Nikhil Uday Naphade, Wing Yeung Chung, Daniel Malachi Ballesty, Glenn Robert Shaffer, Jeffret James Kisak, Dale Martin DiDomenico, Suresh Govindappa, Manibabu Pippalla, Sethu Madhavan, Jared Klineman Cooper, Huan Tan, John Michael Lizzi, Charles Burton Theurer, Balajee Kannan, Romano Patrick, Brad Thomas Costa, James D. Brooks, Micahel Scott Miner, Harry Kirk Matthews, JR., Bradford Wayne Miller, Neeraja Subrahmaniyan, Brian Joseph McManus, Frank Wawrzyniak, Ralph C. Haddock, III, Robert James Foy, James Glen Corry, Steven Andrew Kellner, Joseph Mario Nazareth, Brian William Schroeck, Shawn Arthur McClintic
  • Publication number: 20190176862
    Abstract: System includes a controller configured to obtain one or more of a route parameter or a vehicle parameter from discrete examinations of one or more of a route or a vehicle system. The route parameter is indicative of a health of the route over which the vehicle system travels. The vehicle parameter is indicative of a health of the vehicle system. The discrete examinations of the one or more of the route or the vehicle system separated from each other by one or more of location or time. The controller is configured to examine the one or more of the route parameter or the vehicle parameter to determine whether the one or more of the route or the vehicle system is damaged. The system also includes examination equipment configured to continually monitor the one or more of the route or the vehicle system responsive to determining that the one or more of the route or the vehicle is damaged.
    Type: Application
    Filed: February 14, 2019
    Publication date: June 13, 2019
    Inventors: Ajith Kuttannair Kumar, Wolfgang Daum, Martin Paget, Daniel Rush, Brad Thomas Costa, Seneca Snyder, Jerry Duncan, Mark Bradshaw Kraeling, Michael Scott Miner, Shannon Joseph Clouse, Anwarul Azam, Matthew Lawrence Blair, Nidhi Naithani, Dattaraj Jagdish Rao, Anju Bind, Sreyashi Dey Chaki, Scott Daniel Nelson, Nikhil Uday Naphade, Wing Yeung Chung, Daniel Malachi Ballesty, Glenn Robert Shaffer, Jeffrey James Kisak, Dale Martin DiDomenico, Suresh Govindappa, Manibabu Pippalla, Sethu Madhavan, Arunachala Karthik Sridharan, Prabhu Marimuthu, Jared Klineman Cooper, Joseph Forrest Noffsinger, Paul Kenneth Houpt, David Lowell McKay
  • Publication number: 20190180118
    Abstract: An imaging system includes a digital camera configured to be disposed in a locomotive system that includes a locomotive coupled to a rail vehicle. The camera generates image data within a field of view that includes a cab of the locomotive system and a portion of a route being traveled on and/or wayside devices disposed along the route. The cab includes a space where an operator of the vehicle is located. The system also can include one or more analysis processors that examine the image data generated by the camera to identify route damage, a deteriorating condition of the route, and/or a condition of the wayside devices. The condition of the wayside devices can include damage to the wayside devices, a missing wayside device, deterioration of the wayside devices, or a change in terrain.
    Type: Application
    Filed: February 18, 2019
    Publication date: June 13, 2019
    Inventors: Mark Bradshaw Kraeling, Matthew Blair, Shannon Joseph Clouse, Scott Daniel Nelson, Nidhi Naithani, Dattaraj Jagdish Rao, Anwarul Azam, Nikhil Uday Naphade, Jaymin Thakkar, Ankit Sharma, Priyanka Joseph
  • Publication number: 20190106135
    Abstract: A locomotive control system includes a mobile platform that moves under remote and/or autonomous control, a sensor package supported by the mobile platform that obtains information relating to a component of a railroad, and one or more processors that receive the sensor information and analyze the information in combination with other information that is not obtained from the sensor package. The processors also generate an output that displays information relating to one or more of a status, a condition, and/or a state of health of the component of the railroad; initiates an action to change an operational state of the component; identifies a hazard to one or more locomotives traveling within the railroad; and/or collects the information relating to the component. Optionally, the component is not communicatively coupled to an information network and the mobile platform provides the information obtained by the sensor package to the information network.
    Type: Application
    Filed: November 20, 2018
    Publication date: April 11, 2019
    Inventors: Ajith Kuttannair Kumar, Wolfgang Daum, Martin Paget, Daniel Rush, Sameh Fahmy, Brad Thomas Costa, Seneca Snyder, Jerry Duncan, Mark Bradshaw Kraeling, Michael Scott Miner, Shannon Joseph Clouse, Anwarul Azam, Matthew Lawrence Blair, Nidhi Naithani, Dattaraj Jagdish Rao, Anju Bind, Sreyashi Dey Chaki, Scott Daniel Nelson, Nikhil Uday Naphade, Wing Yeung Chung, Daniel Malachi Ballesty, Glenn Robert Shaffer, Jeffrey James Kisak, Dale Martin DiDomenico
  • Publication number: 20190042861
    Abstract: A locomotive speed determination system and method receive image data of a field of view of a camera operably disposed onboard a locomotive. A speed and/or heading of the locomotive are determined as the vehicle is moving based at least in part on one or more differences in the image data. In one aspect, pixel intensities in different images or frames may be examined to identify one or more features of interest in the images or frames. Movement of the one or more features of interest in the images or frames is correlated to movement of the locomotive along the route, and the time difference between when the images or frames are obtained can be used to determine the locomotive speed.
    Type: Application
    Filed: October 12, 2018
    Publication date: February 7, 2019
    Inventors: Dattaraj Jagdish Rao, Scott Daniel Nelson, Nidhi Naithani, Nikhil Uday Naphade
  • Publication number: 20190020807
    Abstract: A camera system and method capture image data with a camera, a data storage device electrically connected to the camera and configured to store the video data and/or a communication device electrically connected to the camera and configured to communicate the image data to a system receiver located remote from the camera. The system receiver may be located onboard a vehicle such that an operator can carry the camera off board the vehicle and communicate the image data back to the vehicle, when performing, for example, work on the vehicle or inspecting the vehicle or the environs of the vehicle.
    Type: Application
    Filed: September 20, 2018
    Publication date: January 17, 2019
    Inventors: Mark Bradshaw Kraeling, Michael Scott Miner, Shannon Joseph Clouse, Anwarul Azam, Matthew Lawrence Blair, Nidhi Naithani, Dattaraj Jagdish Rao, Anju Bind, Sreyashi Dey Chaki, Scott Daniel Nelson, Nikhil Uday Naphade, Wing Yeung Chung, Daniel Malachi Ballesty, Glenn Robert Shaffer, Jeffrey James Kisak
  • Patent number: 10176386
    Abstract: A vehicle speed determination system and method receive image data of a field of view of a camera operably disposed onboard a vehicle. A speed and/or heading of the vehicle are determined as the vehicle is moving based at least in part on one or more differences in the image data. In one aspect, pixel intensities in different images or frames may be examined to identify one or more features of interest in the images or frames. Movement of the one or more features of interest in the images or frames is correlated to movement of the vehicle along the route, and the time difference between when the images or frames are obtained can be used to determine the vehicle speed.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: January 8, 2019
    Assignee: General Electric Company
    Inventors: Dattaraj Jagdish Rao, Scott Daniel Nelson, Nidhi Naithani, Nikhil Uday Naphade
  • Patent number: 10110795
    Abstract: A camera system and method capture image data with a camera, a data storage device electrically connected to the camera and configured to store the video data and/or a communication device electrically connected to the camera and configured to communicate the image data to a system receiver located remote from the camera. The system receiver may be located onboard a vehicle such that an operator can carry the camera off board the vehicle and communicate the image data back to the vehicle, when performing, for example, work on the vehicle or inspecting the vehicle or the environs of the vehicle.
    Type: Grant
    Filed: November 14, 2014
    Date of Patent: October 23, 2018
    Assignee: General Electric Company
    Inventors: Mark Bradshaw Kraeling, Michael Scott Miner, Shannon Joseph Clouse, Anwarul Azam, Matthew Lawrence Blair, Nidhi Naithani, Dattaraj Jagdish Rao, Anju Bind, Sreyashi Dey Chaki, Scott Daniel Nelson, Nikhil Uday Naphade, Wing Yeung Chung, Daniel Malachi Ballesty, Glenn Robert Shaffer, Jeffrey James Kisak
  • Patent number: 9919723
    Abstract: An aerial system and method use a distance sensor to measure spatial distances between the distance sensor and plural vehicles in a vehicle system formed from the vehicles operably coupled with each other during relative movement between the distance sensor and the vehicle system. The spatial distances measured by the distance sensor are used to determine a size parameter of the vehicle system based on the spatial distances that are measured.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: March 20, 2018
    Assignee: General Electric Company
    Inventors: Aadeesh Shivkant Bhagwatkar, Sharon DSouza, Krishna Chaitanya Narra, Brad Thomas Costa, Seneca Snyder, Jerry Duncan, Mark Bradshaw Kraeling, Michael Scott Miner, Shannon Joseph Clouse, Anwarul Azam, Matthew Lawrence Blair, Nidhi Naithani, Dattaraj Jagdish Rao, Anju Bind, Sreyashi Dey Chaki, Scott Daniel Nelson, Nikhil Uday Naphade, Wing Yeung Chung, Daniel Malachi Ballesty, Glenn Robert Shaffer, Jeffrey James Kisak, Dale Martin DiDomenico
  • Patent number: 9873442
    Abstract: An aerial camera system includes an aerial device disposed onboard a non-aerial vehicle as the non-aerial vehicle moves along a route. The aerial device also can be configured to fly above the route during movement of the vehicle along the route. The camera unit is configured to be disposed onboard the aerial device and to generate image data during flight of the aerial device. The one or more image analysis processors are configured to examine the image data and to identify a hazard disposed ahead of the non-aerial vehicle along a direction of travel of the non-aerial vehicle based on the image data. A method for identifying route-related hazards using image data obtained from a camera unit on an aerial device.
    Type: Grant
    Filed: February 17, 2015
    Date of Patent: January 23, 2018
    Assignee: General Electric Company
    Inventors: Brad Thomas Costa, Seneca Snyder, Jerry Duncan, Mark Bradshaw Kraeling, Michael Scott Miner, Shannon Joseph Clouse, Anwarul Azam, Matthew Lawrence Blair, Nidhi Naithani, Dattaraj Jagdish Rao, Anju Bind, Sreyashi Dey Chaki, Scott Daniel Nelson, Nikhil Uday Naphade, Wing Yeung Chung, Daniel Malachi Ballesty, Glenn Robert Shaffer, Jeffrey James Kisak, Dale Martin DiDomenico
  • Publication number: 20160189393
    Abstract: A vehicle speed determination system and method receive image data of a field of view of a camera operably disposed onboard a vehicle. A speed and/or heading of the vehicle are determined as the vehicle is moving based at least in part on one or more differences in the image data. In one aspect, pixel intensities in different images or frames may be examined to identify one or more features of interest in the images or frames. Movement of the one or more features of interest in the images or frames is correlated to movement of the vehicle along the route, and the time difference between when the images or frames are obtained can be used to determine the vehicle speed.
    Type: Application
    Filed: December 22, 2015
    Publication date: June 30, 2016
    Inventors: Dattaraj Jagdish Rao, Scott Daniel Nelson, Nidhi Naithani, Nikhil Uday Naphade
  • Publication number: 20160039436
    Abstract: An aerial system and method use a distance sensor to measure spatial distances between the distance sensor and plural vehicles in a vehicle system formed from the vehicles operably coupled with each other during relative movement between the distance sensor and the vehicle system. The spatial distances measured by the distance sensor are used to determine a size parameter of the vehicle system based on the spatial distances that are measured.
    Type: Application
    Filed: October 15, 2015
    Publication date: February 11, 2016
    Inventors: Aadeesh Shivkant Bhagwatkar, Sharon DSouza, Krishna Chaitanya Narra, Brad Thomas Costa, Seneca Snyder, Jerry Duncan, Mark Bradshaw Kraeling, Michael Scott Miner, Shannon Joseph Clouse, Anwarul Azam, Matthew Lawrence Blair, Nidhi Naithani, Dattaraj Jagdish Rao, Anju Bind, Sreyashi Dey Chaki, Scott Daniel Nelson, Nikhil Uday Naphade, Wing Yeung Chung, Daniel Malachi Ballesty, Glenn Robert Shaffer, Jeffrey James Kisak, Dale Martin DiDomenico
  • Publication number: 20150269722
    Abstract: Optical route examination systems and methods described herein obtain image data of a field of view of a camera disposed onboard a first vehicle as the first vehicle moves along a first route, and autonomously examine the image data onboard the first vehicle to identify one or more of a feature of interest or a designated object.
    Type: Application
    Filed: September 8, 2014
    Publication date: September 24, 2015
    Inventors: Nidhi Naithani, Dattaraj Jagdish Rao, Scott Daniel Nelson, Nikhil Uday Naphade
  • Publication number: 20150235094
    Abstract: An imaging system and method generate image data within a field of view that includes a cab of the vehicle and a portion of a route being traveled on and/or wayside devices disposed along the route. The cab includes a space where an operator of the vehicle is located. The image data generated by the camera is examined to identify route damage, a deteriorating condition of the route, and/or a condition of the wayside devices. The condition of the wayside devices can include damage to the wayside devices, a missing wayside device, deterioration of the wayside devices, or a change in terrain.
    Type: Application
    Filed: August 12, 2014
    Publication date: August 20, 2015
    Inventors: Mark Bradshaw KRAELING, Matthew Lawrence Blair, Shannon Joseph Clouse, Scott Daniel Nelson, Nidhi Naithani, Dattaraj Jagdish Rao, Anwarul Azam
  • Publication number: 20150158513
    Abstract: An aerial camera system includes an aerial device disposed onboard a non-aerial vehicle as the non-aerial vehicle moves along a route. The aerial device also can be configured to fly above the route during movement of the vehicle along the route. The camera unit is configured to be disposed onboard the aerial device and to generate image data during flight of the aerial device. The one or more image analysis processors are configured to examine the image data and to identify a hazard disposed ahead of the non-aerial vehicle along a direction of travel of the non-aerial vehicle based on the image data. A method for identifying route-related hazards using image data obtained from a camera unit on an aerial device.
    Type: Application
    Filed: February 17, 2015
    Publication date: June 11, 2015
    Inventors: Brad Thomas Costa, Seneca Snyder, Jerry Duncan, Mark Bradshaw Kraeling, Michael Scott Miner, Shannon Joseph Clouse, Anwarul Azam, Matthew Lawrence Blair, Nidhi Naithani, Dattaraj Jagdish Rao, Anju Bind, Sreyashi Dey Chaki, Scott Daniel Nelson, Nikhil Uday Naphade, Wing Yeung Chung, Daniel Malachi Ballesty, Glenn Robert Shaffer, Jeffrey James Kisak, Dale Martin DiDomenico