Patents by Inventor Scott E. Kufeld

Scott E. Kufeld has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150232396
    Abstract: A process for component separation in a polymer production system, comprising separating a polymerization product stream into a gas stream and a polymer stream, wherein the gas stream comprises ethane and unreacted ethylene, distilling the gas stream into a light hydrocarbon stream, wherein the light hydrocarbon stream comprises ethane and unreacted ethylene, contacting the light hydrocarbon stream with an absorption solvent system, wherein at least a portion of the unreacted ethylene from the light hydrocarbon stream is absorbed by the absorption solvent system, and recovering a waste gas stream from the absorption solvent system, wherein the waste gas stream comprises ethane, hydrogen, or combinations thereof.
    Type: Application
    Filed: April 30, 2015
    Publication date: August 20, 2015
    Inventors: Scott E. Kufeld, John D. Hottovy, Ai-fu Chang
  • Patent number: 9108147
    Abstract: A process for component separation in a polymer production system, comprising separating a polymerization product stream into a gas stream and a polymer stream, wherein the gas stream comprises ethane and unreacted ethylene, distilling the gas stream into a light hydrocarbon stream, wherein the light hydrocarbon stream comprises ethane and unreacted ethylene, contacting the light hydrocarbon stream with an absorption solvent system, wherein at least a portion of the unreacted ethylene from the light hydrocarbon stream is absorbed by the absorption solvent system, and recovering a waste gas stream from the absorption solvent system, wherein the waste gas stream comprises ethane, hydrogen, or combinations thereof.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: August 18, 2015
    Assignee: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Scott E. Kufeld, John D. Hottovy, Ai-fu Chang
  • Patent number: 9079986
    Abstract: A system and method for producing polyolefin, including a polyolefin reactor system having: a first reactor to produce a first reactor discharge stream having a first polyolefin and a first diluent; and a second reactor to receive at least a portion of the first reactor discharge stream and to produce a second reactor discharge stream having a second polyolefin and a second diluent, wherein the second diluent is different than the first diluent.
    Type: Grant
    Filed: June 26, 2014
    Date of Patent: July 14, 2015
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Maruti Bhandarkar, Elizabeth Ann Benham, Rebecca A. Gonzales, Scott E. Kufeld, Joel A Mutchler, Catherine M. Gill, Thanh T. Nguyen, Timothy O. Odi
  • Publication number: 20150133620
    Abstract: Techniques are provided for polymerization. A polymerization method may include polymerizing a monomer in a polymerization reactor to produce a slurry comprising polyolefin particles and a diluent, flowing the slurry out of the polymerization reactor through an outlet of the polymerization reactor, receiving the slurry from the outlet into a slurry handling system, conveying a first mixture from the slurry handling system to a diluent and monomer recovery system, and injecting steam into the first mixture downstream of the slurry handling system using a steam injection system.
    Type: Application
    Filed: November 13, 2013
    Publication date: May 14, 2015
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Scott E. Kufeld, Joel A. Mutchler, David S. Boone
  • Publication number: 20150126693
    Abstract: A system and method for polymerizing olefin in the presence of a chain transfer agent in a first reactor to form a first polyolefin, discharging from the first reactor a transfer shiny having the first polyolefin and the chain transfer agent, and processing the transfer slurry in a separator to remove chain transfer agent and to provide a fluff slurry having the first polyolefin and a lower content of chain transfer agent than in the transfer slurry. The system and method provide for feeding the fluff slurry to a second reactor, polymerizing olefin in the second reactor to form a second polyolefin, and discharging from the second reactor a slurry having the second polyolefin.
    Type: Application
    Filed: January 15, 2015
    Publication date: May 7, 2015
    Inventors: Maruti Bhandarkar, Elizabeth A. Benham, Rebecca A. Gonzales, Scott E. Kufeld, Joel A. Mutchler, Catherine M. Gill, Thanh T. Nguyen, Timothy O. Odi
  • Patent number: 8987390
    Abstract: A system and method for polymerizing olefin in the presence of a chain transfer agent in a first reactor to form a first polyolefin, discharging from the first reactor a transfer slurry having the first polyolefin and the chain transfer agent, and processing the transfer slurry in a separator to remove chain transfer agent and to provide a fluff slurry having the first polyolefin and a lower content of chain transfer agent than in the transfer slurry. The system and method provide for feeding the fluff slurry to a second reactor, polymerizing olefin in the second reactor to form a second polyolefin, and discharging from the second reactor a slurry having the second polyolefin.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: March 24, 2015
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Maruti Bhandarkar, Elizabeth A Benham, Rebecca A. Gonzales, Scott E. Kufeld, Joel A Mutchler, Catherine M. Gill, Thanh T. Nguyen, Timothy O. Odi
  • Patent number: 8932527
    Abstract: Loop reactors for olefin polymerization and processes utilizing such loop reactors are described herein. In one or more embodiments, the loop reactor generally includes a plurality of vertical sections; a plurality of elbow sections connecting the vertical sections to either a horizontal section having a horizontal length (LH) or another elbow section, at least one elbow section having an internal diameter (d), a radius (Rc) of an inner curvature and a chord length (W) and wherein the horizontal length (LH) is from 0 feet to 3 feet, the chord length (W) is 250 inches or less and a ratio (Rc/d) of the radius (Rc) of the inner curvature to the internal diameter (d) of the at least one elbow section is maintained from 2 to 4; and at least one loop reaction zone configured to polymerize an olefin monomer in the presence of a liquid diluent into a slurry comprising particles of a polyolefin polymer.
    Type: Grant
    Filed: August 17, 2014
    Date of Patent: January 13, 2015
    Assignee: Chevron Phillips Chemical Co.
    Inventors: Scott E. Kufeld, Joel A. Mutchler, Ralph W. Romig, John D Stewart, Catherine M Gill, Bruce E. Kreischer, John D. Hottovy
  • Publication number: 20150011814
    Abstract: A system and method for a first reactor to produce a transfer slurry having a first polyolefin polymerized in the first reactor, a heat-removal zone to remove heat from the transfer slurry, and a second reactor to receive the transfer slurry cooled by the heat-removal zone, the second reactor to produce a product slurry having a product polyolefin which includes the first polyolefin and a second polyolefin polymerized in the second reactor.
    Type: Application
    Filed: July 3, 2013
    Publication date: January 8, 2015
    Inventors: Maruti Bhandarkar, Elizabeth A. Benham, Rebecca A. Gonzales, Joel A. Mutchler, Catherine M. Gill, Timothy O. Odi, Thanh T. Nguyen, Scott E. Kufeld
  • Publication number: 20150011718
    Abstract: Processes and systems for the production for pressure management of a polymerization product flowing from a loop polymerization reactor to a separation vessel in a slurry polymerization system are disclosed herein. For example, a process comprises withdrawing a polymerization product slurry from a loop polymerization reactor, conveying the polymerization product slurry through a first line comprising a continuous take-off valve to yield a mixture comprising a vapor phase, wherein the mixture exits the continuous take-off valve, and conveying the mixture through a second line comprising a flashline heater so that the mixture has a Froude number in a range from about 5 to about 100.
    Type: Application
    Filed: September 22, 2014
    Publication date: January 8, 2015
    Inventors: Scott E. Kufeld, Bruce E. Kreischer, John D. Hottovy
  • Patent number: 8921498
    Abstract: Processes and systems for the production for pressure management of a polymerization product flowing from a loop polymerization reactor to a separation vessel in a slurry polymerization system are disclosed herein. For example, a process comprises withdrawing the polymerization product from a loop polymerization reactor, and conveying the withdrawn polymerization product to a separation vessel via a first pressure differential and a second pressure differential. The withdrawn polymerization product may flow through the first pressure differential before flowing through the second pressure differential, and the first pressure differential may be less than the second pressure differential.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: December 30, 2014
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Scott E. Kufeld, Bruce E. Kreischer, John D. Hottovy
  • Publication number: 20140343236
    Abstract: A process for making a low density polymer in a polymerization reactor system, the process comprising polymerizing an olefin monomer, and optionally an olefin comonomer, in the presence of a diluent in a polymerization reactor to make a polymerization product slurry consisting of a liquid phase and a solid phase, wherein the solid phase comprises an olefin polymer having a density of between about 0.905 g/cm3 to about 0.945 g/cm3; and discharging the polymerization product slurry from the polymerization reactor through a continuous take-off valve to make a mixture further comprising a vapor phase. The mixture comprises a pressure less than a bubble point pressure of a component in the polymerization product slurry.
    Type: Application
    Filed: July 31, 2014
    Publication date: November 20, 2014
    Inventors: John D. Hottovy, Scott E. Kufeld
  • Patent number: 8883940
    Abstract: Processes and systems for the production for pressure management of a polymerization product flowing from a loop polymerization reactor to a separation vessel in a slurry polymerization system are disclosed herein. For example, a process comprises withdrawing the polymerization product from a loop polymerization reactor, and conveying the withdrawn polymerization product to a separation vessel via a first pressure differential and a second pressure differential. The withdrawn polymerization product may flow through the first pressure differential before flowing through the second pressure differential, and the first pressure differential may be less than the second pressure differential.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: November 11, 2014
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Scott E. Kufeld, Bruce E. Kreischer, John D. Hottovy
  • Publication number: 20140329977
    Abstract: A process for making a low density polymer in a polymerization reactor system, the process comprising polymerizing an olefin monomer, and optionally an olefin comonomer, in the presence of a diluent in a polymerization reactor to make a polymerization product slurry consisting of a liquid phase and a solid phase, wherein the solid phase comprises an olefin polymer having a density of between about 0.905 g/cm3 to about 0.945 g/cm3; and discharging the polymerization product slurry from the polymerization reactor through a continuous take-off valve to make a mixture further comprising a vapor phase. The mixture comprises a pressure less than a bubble point pressure of a component in the polymerization product slurry.
    Type: Application
    Filed: May 3, 2013
    Publication date: November 6, 2014
    Inventors: John D. HOTTOVY, Scott E. KUFELD
  • Patent number: 8871886
    Abstract: A process for making a low density polymer in a polymerization reactor system, the process comprising polymerizing an olefin monomer, and optionally an olefin comonomer, in the presence of a diluent in a polymerization reactor to make a polymerization product slurry consisting of a liquid phase and a solid phase, wherein the solid phase comprises an olefin polymer having a density of between about 0.905 g/cm3 to about 0.945 g/cm3; and discharging the polymerization product slurry from the polymerization reactor through a continuous take-off valve to make a mixture further comprising a vapor phase. The mixture comprises a pressure less than a bubble point pressure of a component in the polymerization product slurry.
    Type: Grant
    Filed: May 3, 2013
    Date of Patent: October 28, 2014
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: John D. Hottovy, Scott E. Kufeld
  • Publication number: 20140309382
    Abstract: A system and method for producing polyolefin, including a polyolefin reactor system having: a first reactor to produce a first reactor discharge stream having a first polyolefin and a first diluent; and a second reactor to receive at least a portion of the first reactor discharge stream and to produce a second reactor discharge stream having a second polyolefin and a second diluent, wherein the second diluent is different than the first diluent.
    Type: Application
    Filed: June 26, 2014
    Publication date: October 16, 2014
    Inventors: Maruti Bhandarkar, Elizabeth Ann Benham, Rebecca A. Gonzales, Scott E. Kufeld, Joel A. Mutchler, Catherine M. Gill, Thanh T. Nguyen, Timothy O. Odi
  • Publication number: 20140275450
    Abstract: A system and method for producing polyolefin, including a polyolefin reactor system having: a first reactor to produce a first reactor discharge stream having a first polyolefin and a first diluent; and a second reactor to receive at least a portion of the first reactor discharge stream and to produce a second reactor discharge stream having a second polyolefin and a second diluent, wherein the second diluent is different than the first diluent.
    Type: Application
    Filed: March 12, 2013
    Publication date: September 18, 2014
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY, LP
    Inventors: Maruti Bhandarkar, Elizabeth A. Benham, Rebecca A. Gonzales, Scott E. Kufeld, Joel A. Mutchler, Catherine M. Gill, Thanh T. Nguyen, Timothy O. Odi
  • Publication number: 20140256889
    Abstract: A manufacturing system for producing polyolefin includes a polymerization reactor, a flash chamber, and a purge column. In certain embodiments, the purge column may receive a solids stream directly from the flash chamber. Further, the purge column may function as a feed tank for an extruder within an extrusion/loadout system. According to certain embodiments, the manufacturing system may be configured to consume less than 445 kilowatt-hours of energy per metric ton of polyolefin produced based on consumption of electricity, steam, and fuel gas.
    Type: Application
    Filed: May 23, 2014
    Publication date: September 11, 2014
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Robert R. McElvain, John D. Hottovy, Ralph W. Romig, Donald W. Verser, David H. Burns, John H. Tait, Richard Peacock, James E. Hein, Scott E. Kufeld, Carl W. Fenderson, Anurag Gupta, Dale A. Zellers
  • Patent number: 8822608
    Abstract: A system and method for producing polyolefin, including a polyolefin reactor system having: a first reactor to produce a first reactor discharge stream having a first polyolefin and a first diluent; and a second reactor to receive at least a portion of the first reactor discharge stream and to produce a second reactor discharge stream having a second polyolefin and a second diluent, wherein the second diluent is different than the first diluent.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: September 2, 2014
    Assignee: Chevron Phillips Chemical Co. LP.
    Inventors: Maruti Bhandarkar, Elizabeth A Benham, Rebecca A. Gonzales, Scott E. Kufeld, Joel A Mutchler, Catherine M. Gill, Thanh T. Nguyen, Timothy O. Odi
  • Patent number: 8765884
    Abstract: A manufacturing system for producing polyolefin includes a polymerization reactor, a flash chamber, and a purge column. In certain embodiments, the purge column may receive a solids stream directly from the flash chamber. Further, the purge column may function as a feed tank for an extruder within an extrusion/loadout system. According to certain embodiments, the manufacturing system may be configured to consume less than 445 kilowatt-hours of energy per metric ton of polyolefin produced based on consumption of electricity, steam, and fuel gas.
    Type: Grant
    Filed: September 20, 2013
    Date of Patent: July 1, 2014
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Robert R. McElvain, John D. Hottovy, Ralph W. Romig, Donald W. Verser, David H. Burns, John H. Tait, Richard Peacock, James E. Hein, Scott E. Kufeld, Carl W. Fenderson, Anurag Gupta, Dale A. Zellers
  • Publication number: 20140171603
    Abstract: A system and method for polymerizing olefin in the presence of a chain transfer agent in a first reactor to form a first polyolefin, discharging from the first reactor a transfer slurry having the first polyolefin and the chain transfer agent, and processing the transfer slurry in a separator to remove chain transfer agent and to provide a fluff slurry having the first polyolefin and a lower content of chain transfer agent than in the transfer slurry. The system and method provide for feeding the fluff slurry to a second reactor, polymerizing olefin in the second reactor to form a second polyolefin, and discharging from the second reactor a slurry having the second polyolefin.
    Type: Application
    Filed: December 18, 2012
    Publication date: June 19, 2014
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY, LP
    Inventors: Maruti Bhandarkar, Elizabeth A. Benham, Rebecca A. Gonzales, Scott E. Kufeld, Joel A. Mutchler, Catherine M. Gill, Thanh T. Nguyen, Timothy O. Odi