Patents by Inventor Scott E. Powers

Scott E. Powers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230374216
    Abstract: A copolyamide composition comprising a statistical copolyamide containing 70-99 wt % of diamine and dicarboxylic acid repeat units and 1-30 wt % of lactam or AA-BB repeat units, whereby incorporation of the comonomer lactam or AA-BB unit reduces the crystallization rate (longer crystallization times) while maintaining (1) high melting point, (2) low potential plate out, (3) low oxygen permeation, (4) high tensile strength and (5) puncture/tear resistance.
    Type: Application
    Filed: July 25, 2023
    Publication date: November 23, 2023
    Applicant: Ascend Performance Materials Operations LLC
    Inventors: Jacob G. Ray, Tiffany Hristopoulos, Steven C. Manning, Tariq S. Oweimreen, Scott E. Powers, Askim Senyurt
  • Patent number: 11787940
    Abstract: A terpolymer composition is described that contains a statistical amount of 50-98 wt % of a first repeating AA-BB comonomer unit; 1-25 wt % of a second repeating AA-BB comonomer unit; and 1-25 wt % of a repeating lactam comonomer unit or 1-25 wt % of a third repeating AA-BB comonomer unit, where the terpolymer composition exhibits a high melting point similar to that of PA66 while also exhibiting a significantly reduced crystallization rate and crystallization temperature.
    Type: Grant
    Filed: June 8, 2022
    Date of Patent: October 17, 2023
    Assignee: Ascend Performance Materials Operations LLC
    Inventors: Jacob G Ray, Douglas Hoffman, Scott E. Powers
  • Patent number: 11753504
    Abstract: A copolyamide composition comprising a statistical copolyamide containing 70-99 wt % of diamine and dicarboxylic acid repeat units and 1-30 wt % of lactam or AA-BB repeat units, whereby incorporation of the comonomer lactam or AA-BB unit reduces the crystallization rate (longer crystallization times) while maintaining (1) high melting point, (2) low potential plate out, (3) low oxygen permeation, (4) high tensile strength and (5) puncture/tear resistance.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: September 12, 2023
    Assignee: Ascend Performance Materials Operations LLC
    Inventors: Jacob G. Ray, Tiffany Hristopoulos, Steven C. Manning, Tariq S. Oweimreen, Scott E. Powers, Askim Senyurt
  • Publication number: 20220325103
    Abstract: A terpolymer composition is described that contains a statistical amount of 50-98 wt % of a first repeating AA-BB comonomer unit; 1-25 wt % of a second repeating AA-BB comonomer unit; and 1-25 wt % of a repeating lactam comonomer unit or 1-25 wt % of a third repeating AA-BB comonomer unit, where the terpolymer composition exhibits a high melting point similar to that of PA66 while also exhibiting a significantly reduced crystallization rate and crystallization temperature.
    Type: Application
    Filed: June 8, 2022
    Publication date: October 13, 2022
    Applicant: Ascend Performance Materials Operations LLC
    Inventors: Jacob G. Ray, Douglas Hoffman, Scott E. Powers
  • Patent number: 11384242
    Abstract: A terpolymer composition is described that contains a statistical amount of 50-98 wt % of a first repeating AA-BB comonomer unit; 1-25 wt % of a second repeating AA-BB comonomer unit; and 1-25 wt % of a repeating lactam comonomer unit or 1-25 wt % of a third repeating AA-BB comonomer unit, where the terpolymer composition exhibits a high melting point similar to that of PA66 while also exhibiting a significantly reduced crystallization rate and crystallization temperature.
    Type: Grant
    Filed: July 29, 2019
    Date of Patent: July 12, 2022
    Assignee: Ascend Performance Materials Operations LLC
    Inventors: Jacob G. Ray, Douglas Hoffman, Scott E. Powers
  • Patent number: 11299627
    Abstract: The present disclosure relates to polyamide compositions and resulting injection-molded articles that can be plated, e.g., metal coated, to form aesthetic injection-molded articles. The polyamide compositions may include from 45 wt. % to 75 wt. % of an polyamide, from 2 wt. % to 40 wt. % of an etchable filler, from 10 wt. % to 40 wt. % of a semi-structural mineral, and optionally from 0.1 wt. % to 13 wt. % of additive. The polyamide composition imparts very good surface appearance to injection-molded articles that are substantially free of visual defects.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: April 12, 2022
    Assignee: Ascend Performance Materials Operations LLC
    Inventors: Kimberly M. White, Scott E. Powers, Jacob G. Ray, Bradley J. Sparks
  • Patent number: 11274192
    Abstract: The present disclosure relates to polyamide compositions and resulting injection-molded articles that can be plated, e.g., metal coated, to form structurally aesthetic injection-molded articles. The polyamide compositions may include from 40 wt. % to 80 wt. % of a polyamide, from 0.5 wt. % to 40 wt. % of an etchable filler, from 5 wt. % to 30 wt. % of glass fiber, optionally less than 40 wt. % of a semi-structural mineral, and optionally from 0.1 wt. % to 13 wt. % of additive. The polyamide composition imparts very good surface appearance and excellent mechanical properties to injection-molded articles that are substantially free of visual defects.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: March 15, 2022
    Assignee: Ascend Performance Materials Operations LLC
    Inventors: Kimberly M. White, Scott E. Powers, Jacob G. Ray, Bradley J. Sparks
  • Publication number: 20210017333
    Abstract: A copolyamide composition comprising a statistical copolyamide containing 70-99 wt % of diamine and dicarboxylic acid repeat units and 1-30 wt % of lactam or AA-BB repeat units, whereby incorporation of the comonomer lactam or AA-BB unit reduces the crystallization rate (longer crystallization times) while maintaining (1) high melting point, (2) low potential plate out, (3) low oxygen permeation, (4) high tensile strength and (5) puncture/tear resistance.
    Type: Application
    Filed: October 1, 2020
    Publication date: January 21, 2021
    Applicant: ASCEND PERFORMANCE MATERIALS OPERATIONS LLC
    Inventors: Jacob G. RAY, Tiffany Hristopoulos, Steven C. Manning, Tariq S. Oweimreen, Scott E. Powers, Askim Senyurt
  • Patent number: 10836863
    Abstract: A copolyamide composition comprising a statistical copolyamide containing 70-99 wt % of diamine and dicarboxylic acid repeat units and 1-30 wt % of lactam or AA-BB repeat units, whereby incorporation of the comonomer lactam or AA-BB unit reduces the crystallization rate (longer crystallization times) while maintaining (1) high melting point, (2) low potential plate out, (3) low oxygen permeation, (4) high tensile strength and (5) puncture/tear resistance.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: November 17, 2020
    Assignee: Ascend Performance Materials Operations LLC
    Inventors: Jacob G. Ray, Tiffany Hristopoulos, Steven C. Manning, Tariq S. Oweimreen, Scott E. Powers, Askim Senyurt
  • Publication number: 20200032057
    Abstract: A terpolymer composition is described that contains a statistical amount of 50-98 wt % of a first repeating AA-BB comonomer unit; 1-25 wt % of a second repeating AA-BB comonomer unit; and 1-25 wt % of a repeating lactam comonomer unit or 1-25 wt % of a third repeating AA-BB comonomer unit, where the terpolymer composition exhibits a high melting point similar to that of PA66 while also exhibiting a significantly reduced crystallization rate and crystallization temperature.
    Type: Application
    Filed: July 29, 2019
    Publication date: January 30, 2020
    Applicant: Ascend Performance Materials Operations LLC
    Inventors: Jacob G. Ray, Douglas Hoffman, Scott E. Powers
  • Publication number: 20200002511
    Abstract: The present disclosure relates to polyamide compositions and resulting injection-molded articles that can be plated, e.g., metal coated, to form structurally aesthetic injection-molded articles. The polyamide compositions may include from 40 wt. % to 80 wt. % of a polyamide, from 0.5 wt. % to 40 wt. % of an etchable filler, from 5 wt. % to 30 wt. % of glass fiber, optionally less than 40 wt. % of a semi-structural mineral, and optionally from 0.1 wt. % to 13 wt. % of additive. The polyamide composition imparts very good surface appearance and excellent mechanical properties to injection-molded articles that are substantially free of visual defects.
    Type: Application
    Filed: June 27, 2019
    Publication date: January 2, 2020
    Applicant: Ascend Performance Materials Operations LLC
    Inventors: Kimberly M. White, Scott E. Powers, Jacob G. Ray, Bradley J. Sparks
  • Publication number: 20200002532
    Abstract: The present disclosure relates to polyamide compositions and resulting injection-molded articles that can be plated, e.g., metal coated, to form aesthetic injection-molded articles. The polyamide compositions may include from 45 wt. % to 75 wt. % of an polyamide, from 2 wt. % to 40 wt. % of an etchable filler, from 10 wt. % to 40 wt. % of a semi-structural mineral, and optionally from 0.1 wt. % to 13 wt. % of additive. The polyamide composition imparts very good surface appearance to injection-molded articles that are substantially free of visual defects.
    Type: Application
    Filed: June 27, 2019
    Publication date: January 2, 2020
    Applicant: Ascend Performance Materials Operations LLC
    Inventors: Kimberly M. White, Scott E. Powers, Jacob G. Ray, Bradley J. Sparks
  • Publication number: 20180298144
    Abstract: A copolyamide composition comprising a statistical copolyamide containing 70-99 wt % of diamine and dicarboxylic acid repeat units and 1-30 wt % of lactam or AA-BB repeat units, whereby incorporation of the comonomer lactam or AA-BB unit reduces the crystallization rate (longer crystallization times) while maintaining (1) high melting point, (2) low potential plate out, (3) low oxygen permeation, (4) high tensile strength and (5) puncture/tear resistance.
    Type: Application
    Filed: September 28, 2016
    Publication date: October 18, 2018
    Applicant: Ascend Performance Materials Operations LLC
    Inventors: Jacob G. Ray, Tiffany Hristopoulos, Steven C. Manning, Tariq S. Oweimreen, Scott E. Powers, Askim Senyurt
  • Patent number: D349188
    Type: Grant
    Filed: February 7, 1992
    Date of Patent: August 2, 1994
    Inventor: Scott E. Powers