Patents by Inventor Scott E. Semmler

Scott E. Semmler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8718433
    Abstract: A mechanical splice fiber optic connector installation tool operable for performing splice terminations and verifying an acceptable splice termination includes a power source, a connector holder, an integrated Visual Fault Locater having an optical transmission element and a display for displaying the status of the termination. An adapter configured to receive the connector and align the connector with the optical transmission element, such that the optical transmission element is spaced apart from the connector at a predetermined distance and is in optical communication with the connector for propagating light energy through the adapter and along the stub optical fiber to a termination area of the connector.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: May 6, 2014
    Assignee: Corning Cable Systems LLC
    Inventors: Bradley S. Billman, David W. Meek, Scott E. Semmler
  • Patent number: 8678260
    Abstract: Methods, cleavers, and packagings for cleaving an optical fiber using an abrasive medium are disclosed. In one embodiment, a bladeless cleaver includes a body having an arcuate exterior surface, which may be provided in one embodiment by an exterior surface of a tool or toolkit, such as, but not limited to, a consumables kit or other packaging. A cleaver structure is disposed on the body such that a space between the arcuate exterior surface of the body and the cleaver structure is configured to receive a portion of the optical fiber to be cleaved. The cleaver structure comprises an abrasive medium carrier that is configured to be actuated to place the abrasive medium in contact with the portion of the optical fiber to create a flaw in the portion of the optical fiber. In another embodiment, the portion of the optical fiber may be positioned directly along the arcuate exterior surface of the body.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: March 25, 2014
    Assignee: Corning Cable Systems LLC
    Inventors: Brandon A. Barnes, Joshua D. Raker, Greg J. Scherer, Scott E. Semmler
  • Patent number: 8408813
    Abstract: A fiber optic connector for making a mechanical splice with an optical fiber secured in an optical fiber handler is disclosed. The fiber optic connector provides the craft with a simple, fast and reliable way for terminating the optical fiber.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: April 2, 2013
    Assignee: Corning Cable Systems LLC
    Inventors: Brandon A. Barnes, Joshua D. Raker, Greg J. Scherer, Scott E. Semmler
  • Patent number: 8403569
    Abstract: Termination systems and devices disclosed herein use a handler that attaches to the optical fiber or cable and cooperates with other components for preparing the optical fiber and/or making the optical connection, thereby providing a simple, reliable, and easy termination for the optical fiber. For instance, the handler may cooperate with one or more of the following a strip tool, strip/clean tool, cleave tool for preparing the end of the optical fiber(s), and/or a connector-to-handler adapter for making the optical connection.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: March 26, 2013
    Assignee: Corning Cable Systems LLC
    Inventors: Brandon A. Barnes, Kevin C. Beach, Greg James Scherer, Scott E. Semmler
  • Patent number: 8094988
    Abstract: Apparatus and methods for verifying an acceptable splice termination include propagating light energy into the stub optical fiber of a fiber optic connector, detecting and collecting the amount of optical power emanating from the stub optical fiber at a termination area of the connector, converting the optical power to an electrical signal proportional to the amount of collected optical power, and displaying the electrical signal on a feedback monitor, such as an optical power meter, an LCD bar graph, or an LED. An initial (i.e., reference) value is obtained with the field optical fiber not in physical contact with the stub optical fiber. A final (i.e., terminated) value is obtained with the field optical fiber in physical contact with the stub optical fiber and terminated to the connector. The final value is compared to the initial value to determine whether the change (i.e., difference) is sufficient. Alternatively, the final value is compared to a predetermined limit or threshold.
    Type: Grant
    Filed: December 15, 2005
    Date of Patent: January 10, 2012
    Assignee: Corning Cable Systems LLC
    Inventors: Bradley S. Billman, David W. Meek, Joshua D. Raker, Scott E. Semmler
  • Patent number: 8047727
    Abstract: A strain-relief assembly for a field-installable fiber optic connector is disclosed, wherein the assembly includes a ferrule holder, an intermediate sleeve, and a crimp sleeve. The ferrule holder back section holds a buffered section of a fiber optic cable, while the ferrule holder front end holds a ferrule and a splice assembly. A stub fiber is held within the ferrule and the splice assembly so as to interface with a section of field optical fiber protruding from the buffered section. The intermediate sleeve engages and generally surrounds a portion of the ferrule holder back section and thus surrounds a portion of the buffered layer. An intermediate sleeve handler may be used to handle the intermediate sleeve and attached the intermediate sleeve to the ferrule holder back section. Stress-relief strands from the fiber optic cable are flared around the outer surface of the intermediate sleeve. A crimp sleeve is placed over the intermediate sleeve to hold the ends of the stress-relief strands in place.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: November 1, 2011
    Assignee: Corning Cable Systems LLC
    Inventors: Ray S. Barnes, Kristine A. McEvoy, David W. Meek, Scott E. Semmler
  • Publication number: 20110204116
    Abstract: Methods, cleavers, and packagings for cleaving an optical fiber using an abrasive medium are disclosed. In one embodiment, a bladeless cleaver includes a body having an arcuate exterior surface, which may be provided in one embodiment by an exterior surface of a tool or toolkit, such as, but not limited to, a consumables kit or other packaging. A cleaver structure is disposed on the body such that a space between the arcuate exterior surface of the body and the cleaver structure is configured to receive a portion of the optical fiber to be cleaved. The cleaver structure comprises an abrasive medium carrier that is configured to be actuated to place the abrasive medium in contact with the portion of the optical fiber to create a flaw in the portion of the optical fiber. In another embodiment, the portion of the optical fiber may be positioned directly along the arcuate exterior surface of the body.
    Type: Application
    Filed: February 23, 2010
    Publication date: August 25, 2011
    Inventors: Brandon A. Barnes, Joshua D. Raker, Greg J. Scherer, Scott E. Semmler
  • Publication number: 20110176780
    Abstract: A fiber optic connector for making a mechanical splice with an optical fiber secured in an optical fiber handler is disclosed. The fiber optic connector provides the craft with a simple, fast and reliable way for terminating the optical fiber.
    Type: Application
    Filed: January 14, 2011
    Publication date: July 21, 2011
    Inventors: Brandon A. Barnes, Joshua D. Raker, Greg J. Scherer, Scott E. Semmler
  • Patent number: 7942587
    Abstract: A strain-relief assembly for a field-installable fiber optic connector is disclosed, wherein the assembly includes a ferrule holder, an intermediate sleeve, and a crimp sleeve. The ferrule holder back section holds a buffered section of a fiber optic cable, while the ferrule holder front end holds a ferrule and a splice assembly. A stub fiber is held within the ferrule and the splice assembly so as to interface with a section of field optical fiber protruding from the buffered section. The intermediate sleeve engages and generally surrounds a portion of the ferrule holder back section and thus surrounds a portion of the buffered layer. An intermediate sleeve handler may be used to handle the intermediate sleeve and attached the intermediate sleeve to the ferrule holder back section. Stress-relief strands from the fiber optic cable are flared around the outer surface of the intermediate sleeve. A crimp sleeve is placed over the intermediate sleeve to hold the ends of the stress-relief strands in place.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: May 17, 2011
    Assignee: Corning Cable Systems LLC
    Inventors: Ray S. Barnes, Kristine A. McEvoy, David W. Meek, Scott E. Semmler
  • Publication number: 20110052123
    Abstract: A strain-relief assembly for a field-installable fiber optic connector is disclosed, wherein the assembly includes a ferrule holder, an intermediate sleeve, and a crimp sleeve. The ferrule holder back section holds a buffered section of a fiber optic cable, while the ferrule holder front end holds a ferrule and a splice assembly. A stub fiber is held within the ferrule and the splice assembly so as to interface with a section of field optical fiber protruding from the buffered section. The intermediate sleeve engages and generally surrounds a portion of the ferrule holder back section and thus surrounds a portion of the buffered layer. An intermediate sleeve handler may be used to handle the intermediate sleeve and attached the intermediate sleeve to the ferrule holder back section. Stress-relief strands from the fiber optic cable are flared around the outer surface of the intermediate sleeve. A crimp sleeve is placed over the intermediate sleeve to hold the ends of the stress-relief strands in place.
    Type: Application
    Filed: August 5, 2010
    Publication date: March 3, 2011
    Inventors: Ray S. Barnes, Kristine A. McEvoy, David W. Meek, Scott E. Semmler
  • Patent number: 7785017
    Abstract: A strain-relief assembly for a field-installable fiber optic connector is disclosed, wherein the assembly includes a ferrule holder, an intermediate sleeve, and a crimp sleeve. The ferrule holder back section holds a buffered section of a fiber optic cable, while the ferrule holder front end holds a ferrule and a splice assembly. A stub fiber is held within the ferrule and the splice assembly so as to interface with a section of field optical fiber protruding from the buffered section. The intermediate sleeve engages and generally surrounds a portion of the ferrule holder back section and thus surrounds a portion of the buffered layer. An intermediate sleeve handler may be used to handle the intermediate sleeve and attached the intermediate sleeve to the ferrule holder back section. Stress-relief strands from the fiber optic cable are flared around the outer surface of the intermediate sleeve. A crimp sleeve is placed over the intermediate sleeve to hold the ends of the stress-relief strands in place.
    Type: Grant
    Filed: November 7, 2007
    Date of Patent: August 31, 2010
    Assignee: Corning Cable Systems LLC
    Inventors: Ray S. Barnes, Kristine A. McEvoy, David W. Meek, Scott E. Semmler
  • Publication number: 20100183265
    Abstract: Termination systems and devices disclosed herein use a handler that attaches to the optical fiber or cable and cooperates with other components for preparing the optical fiber and/or making the optical connection, thereby providing a simple, reliable, and easy termination for the optical fiber. For instance, the handler may cooperate with one or more of the following a strip tool, strip/clean tool, cleave tool for preparing the end of the optical fiber(s), and/or a connector-to-handler adapter for making the optical connection.
    Type: Application
    Filed: January 19, 2010
    Publication date: July 22, 2010
    Inventors: Brandon A. Barnes, Kevin C. Beach, Greg James Scherer, Scott E. Semmler
  • Publication number: 20100142905
    Abstract: A mechanical splice fiber optic connector installation tool operable for performing splice terminations and verifying an acceptable splice termination includes a power source, a connector holder, an integrated Visual Fault Locater having an optical transmission element and a display for displaying the status of the termination. An adapter configured to receive the connector and align the connector with the optical transmission element, such that the optical transmission element is spaced apart from the connector at a predetermined distance and is in optical communication with the connector for propagating light energy through the adapter and along the stub optical fiber to a termination area of the connector.
    Type: Application
    Filed: February 17, 2010
    Publication date: June 10, 2010
    Inventors: Bradley S. Billman, David W. Meek, Scott E. Semmler
  • Patent number: 7680384
    Abstract: A mechanical splice fiber optic connector installation tool operable for performing splice terminations and verifying an acceptable splice termination includes a power source, a connector holder, an integrated Visual Fault Locater having an optical transmission element and a display for displaying the status of the termination. An adapter configured to receive the connector and align the connector with the optical transmission element, such that the optical transmission element is spaced apart from the connector at a predetermined distance and is in optical communication with the connector for propagating light energy through the adapter and along the stub optical fiber to a termination area of the connector.
    Type: Grant
    Filed: January 26, 2006
    Date of Patent: March 16, 2010
    Assignee: Corning Cable Systems LLC
    Inventors: Bradley S. Billman, David W. Meek, Scott E. Semmler
  • Patent number: 7658553
    Abstract: A mechanical splice connector is shown and described for sequentially performing a splice actuation followed by a strain relief actuation by rotating a single, multiple-position cam member or multiple cam members from an unactuated position to a first actuated position and a second actuated position. The mechanical splice connector aligns and retains at least one stub optical fiber and the bare glass portion of at least one adjoining field optical fiber, as well as strain relieving a coated portion of the field optical fiber, or alternatively, a buffered portion of the field optical fiber. A method is also described for sequentially performing a splice actuation followed by a strain relief actuation, wherein the splice actuation is reversible prior to performing the strain relief actuation in the event that the optical continuity of the splice coupling is unacceptable, thereby avoiding potential damage to the field optical fiber or the connector.
    Type: Grant
    Filed: March 14, 2006
    Date of Patent: February 9, 2010
    Assignee: Corning Cable Systems LLC
    Inventors: Scott E. Semmler, Brandon A. Barnes, Kevin C. Beach, Bradley S. Billman, Donald G. Doss, David W. Meek
  • Publication number: 20090087147
    Abstract: A strain-relief assembly for a field-installable fiber optic connector is disclosed, wherein the assembly includes a ferrule holder, an intermediate sleeve, and a crimp sleeve. The ferrule holder back section holds a buffered section of a fiber optic cable, while the ferrule holder front end holds a ferrule and a splice assembly. A stub fiber is held within the ferrule and the splice assembly so as to interface with a section of field optical fiber protruding from the buffered section. The intermediate sleeve engages and generally surrounds a portion of the ferrule holder back section and thus surrounds a portion of the buffered layer. An intermediate sleeve handler may be used to handle the intermediate sleeve and attached the intermediate sleeve to the ferrule holder back section. Stress-relief strands from the fiber optic cable are flared around the outer surface of the intermediate sleeve. A crimp sleeve is placed over the intermediate sleeve to hold the ends of the stress-relief strands in place.
    Type: Application
    Filed: November 7, 2007
    Publication date: April 2, 2009
    Inventors: Ray S. Barnes, Kristine A. McEvoy, David W. Meek, Scott E. Semmler
  • Patent number: 7329049
    Abstract: A splice connector for verifying an acceptable splice termination includes a ferrule having a stub optical fiber, a ferrule holder for receiving the ferrule, opposed splice components within the ferrule holder for receiving and aligning the stub optical fiber and a field optical fiber, a cam member for engaging one of the splice components to terminate the field optical fiber, and means for viewing an amount of glow emanating from a termination area. In one embodiment, a splice component and the portion of the ferrule holder disposed between the splice component and the cam member are optically transmissive. The cam member has a first array of wells and a second array of wells for viewing the amount of glow before and after the field optical fiber is terminated. In another embodiment, the ferrule holder is opaque and has a view port, while the cam member has a first well having a first depth and a second well having a second depth.
    Type: Grant
    Filed: December 27, 2005
    Date of Patent: February 12, 2008
    Assignee: Corning Cable Systems LLC
    Inventors: David W. Meek, Scott E. Semmler
  • Patent number: 7270487
    Abstract: A field installable optical fiber connector is provided, the connector including an inner housing defining an interior passageway extending longitudinally between a forward end and a rearward end, a first connector subassembly inserted through the rearward end of the inner housing into the interior passageway thereof. In one embodiment, the first connector subassembly includes a ferrule holder having a ferrule disposed within the ferrule holder, and an optical fiber stub disposed within the ferrule. In another embodiment, the first connector subassembly also includes a flange disposed at a first end of the ferrule holder, a spring element and a spring element retainer slidably mounted on the ferrule holder, and a collar mounted on a second end of the ferrule holder so as to capture the spring and the spring element retainer between the flange and the collar.
    Type: Grant
    Filed: April 30, 2004
    Date of Patent: September 18, 2007
    Assignee: Corning Cable Systems LLC
    Inventors: Bradley S. Billman, Scott E. Semmler
  • Patent number: 7204644
    Abstract: A field installable fiber optic connector includes a housing and a ferrule holder inserted from the rearward end of the housing. A spring element inserted into the front of the housing and a spring element retainer attached to the ferrule holder bias the ferrule holder forward. An optical fiber stub is disposed between opposed splice members and a field fiber is inserted between the splice members and guided by a groove into abutment with the end of the optical fiber stub. A cam disposed about the ferrule holder is movable to facilitate insertion of the field fiber and to clamp the field fiber and the optical fiber stub between the splice members. In one embodiment, a trigger is coupled to the housing. The trigger is disposed about and slides relative to the ferrule holder, thereby biasing the housing forward relative to the ferrule holder to aid in latching the connector.
    Type: Grant
    Filed: November 10, 2004
    Date of Patent: April 17, 2007
    Assignee: Corning Cable Systems LLC
    Inventors: Brandon A. Barnes, Brad S. Billman, David W. Meek, Scott E. Semmler, Jason F. Forsberg
  • Patent number: 7104702
    Abstract: A field installable fiber optic connector includes a housing, a spring element seat and a ferrule holder that is inserted from the rearward end of the housing. A spring element inserted into the front of the housing abuts the spring element seat. A spring element retainer attached to the ferrule holder abuts the forward portion of the spring element to compress the spring element and bias the ferrule holder forward. An optical fiber stub disposed between opposed splice members in an aligning groove terminates intermediate the ends of the splice members. An optical fiber is inserted between the splice members and guided by the groove into abutment with the end of the optical fiber stub. A cam disposed about the ferrule holder is movable to facilitate insertion of the optical fiber and to clamp the optical fiber and the optical fiber stub between the splice members.
    Type: Grant
    Filed: March 24, 2004
    Date of Patent: September 12, 2006
    Assignee: Corning Cable Systems LLC
    Inventors: Brandon A. Barnes, Scott E. Semmler, Derek N. Johnson