Patents by Inventor Scott Ellery George

Scott Ellery George has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110092931
    Abstract: Disclosed are multicomponent fibers derived from a blend of a sulfopolyester with a water non-dispersible polymer wherein the as-spun denier is less than about 6 and wherein the water dispersible sulfopolyester exhibits a melt viscosity of less than 12,000 poise measured at 240° C. at a strain rate of 1 rad/sec, and wherein the sulfopolyester comprising less than about 25 mole % of residues of at least one sulfomonomer, based on the total moles of diacid or diol residues. The multicomponent fiber is capable of being drawn at a relatively high fiber speed, particularly at least about 2000 m/min, and may be used to produce microdenier fibers. Fibrous articles may be produced from the multicomponent fibers and microdenier fibers. Also disclosed is a process for multicomponent fibers, nonwoven fabrics, and microdenier webs.
    Type: Application
    Filed: December 22, 2010
    Publication date: April 21, 2011
    Applicant: EASTMAN CHEMICAL COMPANY
    Inventors: Rakesh Kumar Gupta, Scott Ellery George, Daniel William Klosiewicz, Kab Sik Seo, Coralie McKenna Fleenor, Allen Lynn Crain
  • Publication number: 20110089595
    Abstract: Disclosed are multicomponent fibers derived from a blend of a sulfopolyester with a water non-dispersible polymer wherein the as-spun denier is less than about 6 and wherein the water dispersible sulfopolyester exhibits a melt viscosity of less than 12,000 poise measured at 240° C. at a strain rate of 1 rad/sec, and wherein the sulfopolyester comprising less than about 25 mole % of residues of at least one sulfomonomer, based on the total moles of diacid or diol residues. The multicomponent fiber is capable of being drawn at a relatively high fiber speed, particularly at least about 2000 m/min, and may be used to produce microdenier fibers. Fibrous articles may be produced from the multicomponent fibers and microdenier fibers. Also disclosed is a process for multicomponent fibers, nonwoven fabrics, and microdenier webs.
    Type: Application
    Filed: December 22, 2010
    Publication date: April 21, 2011
    Applicant: EASTMAN CHEMICAL COMPANY
    Inventors: Rakesh Kumar Gupta, Scott Ellery George, Daniel William Klosiewicz, Kab Sik Seo, Coralie McKenna Fleenor, Allen Lynn Crain
  • Publication number: 20110089601
    Abstract: Disclosed are multicomponent fibers derived from a blend of a sulfopolyester with a water non-dispersible polymer wherein the as-spun denier is less than about 6 and wherein the water dispersible sulfopolyester exhibits a melt viscosity of less than 12,000 poise measured at 240° C. at a strain rate of 1 rad/sec, and wherein the sulfopolyester comprising less than about 25 mole % of residues of at least one sulfomonomer, based on the total moles of diacid or diol residues. The multicomponent fiber is capable of being drawn at a relatively high fiber speed, particularly at least about 2000 m/min, and may be used to produce microdenier fibers. Fibrous articles may be produced from the multicomponent fibers and microdenier fibers. Also disclosed is a process for multicomponent fibers, nonwoven fabrics, and microdenier webs.
    Type: Application
    Filed: December 22, 2010
    Publication date: April 21, 2011
    Applicant: EASTMAN CHEMICAL COMPANY
    Inventors: Rakesh Kumar Gupta, Scott Ellery George, Daniel William Klosiewicz, Kab Sik Seo, Coralie McKenna Fleenor, Allen Lynn Crain
  • Publication number: 20110089600
    Abstract: Disclosed are multicomponent fibers derived from a blend of a sulfopolyester with a water non-dispersible polymer wherein the as-spun denier is less than about 6 and wherein the water dispersible sulfopolyester exhibits a melt viscosity of less than 12,000 poise measured at 240° C. at a strain rate of 1 rad/sec, and wherein the sulfopolyester comprising less than about 25 mole % of residues of at least one sulfomonomer, based on the total moles of diacid or diol residues. The multicomponent fiber is capable of being drawn at a relatively high fiber speed, particularly at least about 2000 m/min, and may be used to produce microdenier fibers. Fibrous articles may be produced from the multicomponent fibers and microdenier fibers. Also disclosed is a process for multicomponent fibers, nonwoven fabrics, and microdenier webs.
    Type: Application
    Filed: December 22, 2010
    Publication date: April 21, 2011
    Applicant: EASTMAN CHEMICAL COMPANY
    Inventors: Rakesh Kumar Gupta, Scott Ellery George, Daniel William Klosiewicz, Kab Sik Seo, Coralie McKenna Fleenor, Allen Lynn Crain
  • Publication number: 20110092932
    Abstract: Disclosed are multicomponent fibers derived from a blend of a sulfopolyester with a water non-dispersible polymer wherein the as-spun denier is less than about 6 and wherein the water dispersible sulfopolyester exhibits a melt viscosity of less than 12,000 poise measured at 240° C. at a strain rate of 1 rad/sec, and wherein the sulfopolyester comprising less than about 25 mole % of residues of at least one sulfomonomer, based on the total moles of diacid or diol residues. The multicomponent fiber is capable of being drawn at a relatively high fiber speed, particularly at least about 2000 m/min, and may be used to produce microdenier fibers. Fibrous articles may be produced from the multicomponent fibers and microdenier fibers. Also disclosed is a process for multicomponent fibers, nonwoven fabrics, and microdenier webs.
    Type: Application
    Filed: December 22, 2010
    Publication date: April 21, 2011
    Applicant: EASTMAN CHEMICAL COMPANY
    Inventors: Rakesh Kumar Gupta, Scott Ellery George, Daniel William Klosiewicz, Kab Sik Seo, Coralie McKenna Fleenor, Allen Lynn Crain
  • Patent number: 7923526
    Abstract: A sulfopolyester comprising repeat residue units from the reaction product dimethyl-5-sodiosulfoisophthalate, isophthalic acid, 1,4-cyclohexanedimethanol and diethylene glycol, has at least one property selected from: a) an acidity of greater than 0.030 measured as milliequivalents H+/gram of sulfopolyester; b) a titanium concentration, measured as metal, of less than about 27 ppm, based on the amount of sulfopolyester; or c) an acidity of greater than 0.010 measured as milliequivalents H+/gram of sulfopolyester, a pH of less than 6.0 and a concentration of a base compound of less than 0.0335 moles/kg of sulfopolyester. A method for making the water-dispersible or water-dissipative sulfopolyester of the present invention is disclosed. Aqueous dispersion having from 0.001 to about 35 weight % of the sulfopolyester of the present invention is also disclosed. The sulfopolyester is useful in making hair spray formulations suitable for pump or aerosol spray applicators.
    Type: Grant
    Filed: July 29, 2005
    Date of Patent: April 12, 2011
    Assignee: Eastman Chemical Company
    Inventors: Terry Ann Oldfield, Suzanne Winegar Dobbs, Scott Ellery George, Ricky Thompson, Edward Enns McEntire, George William Tindall
  • Patent number: 7902094
    Abstract: Disclosed are water-dispersible fibers derived from sulfopolyesters having a Tg of at least 25° C. The fibers may contain a single sulfopolyester or a blend of a sulfopolyester with a water-dispersible or water-nondispersible polymer. Also disclosed are multicomponent fibers comprising a water dispersible sulfopolyester having a Tg of at least 57° C. and a water non-dispersible polymer. The multicomponent fibers may be used to produce microdenier fibers. Fibrous articles may be produced from the water-dispersible fibers, multicomponent fibers, and microdenier fibers. The fibrous articles include water-dispersible and microdenier nonwoven webs, fabrics, and multilayered articles such as wipes, gauze, tissue, diapers, panty liners, sanitary napkins, bandages, and surgical dressings. Also disclosed is a process for water-dispersible fibers, nonwoven fabrics, and microdenier webs.
    Type: Grant
    Filed: August 16, 2005
    Date of Patent: March 8, 2011
    Assignee: Eastman Chemical Company
    Inventors: William Alston Haile, Scott Ellery George, Wesley Raymond Hale, Waylon Lewellyn Jenkins
  • Patent number: 7892993
    Abstract: Disclosed are multicomponent fibers derived from a blend of a sulfopolyester with a water non-dispersible polymer wherein the as-spun denier is less than about 6 and wherein the water dispersible sulfopolyester exhibits a melt viscosity of less than 12,000 poise measured at 240° C. at a strain rate of 1 rad/sec, and wherein the sulfopolyester comprising less than about 25 mole % of residues of at least one sulfomonomer, based on the total moles of diacid or diol residues. The multicomponent fiber is capable of being drawn at a relatively high fiber speed, particularly at least about 2000 m/min, and may be used to produce microdenier fibers. Fibrous articles may be produced from the multicomponent fibers and microdenier fibers. Also disclosed is a process for multicomponent fibers, nonwoven fabrics, and microdenier webs.
    Type: Grant
    Filed: January 31, 2006
    Date of Patent: February 22, 2011
    Assignee: Eastman Chemical Company
    Inventors: Rakesh Kumar Gupta, Scott Ellery George, Daniel William Klosiewicz, Kab Sik Seo, Coralie McKenna Fleenor, Allen Lynn Crain
  • Publication number: 20100112250
    Abstract: Disclosed are hot-melt adhesives prepared from polyesters containing 1,4-cyclohexane-dicarboxylic acid as a diacid component and a diol component containing at least two diols chosen from 1,4-cyclohexanedimethanol, triethylene glycol, and diethylene glycol. These adhesives set up rapidly within a well-defined temperature window. The hot-melt adhesives can be used in a variety of applications, but are especially suited as seaming adhesives for roll-applied labels. These adhesives have melting temperatures and crystallization properties that allow their application at temperatures cool enough to prevent curling and premature shrinkage of the shrink label during seaming, and yet produce strong label seams that can withstand the elevated temperatures of a shrink tunnel without sacrificing line speed. Also disclosed are labeled containers and a process for applying a roll-on, shrink label to a container using the hot-melt adhesives of the invention.
    Type: Application
    Filed: October 12, 2009
    Publication date: May 6, 2010
    Applicant: EASTMAN CHEMICAL COMPANY
    Inventors: Marcus David Shelby, Scott Ellery George, Gary Robert Robe, Freddie Wayne Williams, Michael Eugene Donelson, Joshua Seth Cannon, Emmett Patrick O'Brien, Jeremy Richard Lizotte, Anthony Joseph Pasquale
  • Publication number: 20100112251
    Abstract: Disclosed are hot-melt adhesives prepared from aromatic-aliphatic polyesters containing terephthalic acid in combination with adipic acid, glutaric acid, or a mixture thereof, as diacid components and a diol component containing 1,4-butanediol, 1,6-hexanediol, or a combination thereof. These adhesives set up rapidly within a well-defined temperature window. The hot-melt adhesives can be used in a variety of applications, but are especially suited as seaming adhesives for roll-applied labels. These adhesives have melting temperatures and crystallization properties that allow their application at temperatures cool enough to prevent curling and premature shrinkage of the shrink label during seaming, and yet produce strong label seams that can withstand the elevated temperatures of a shrink tunnel without sacrificing line speed. Also disclosed are labeled containers and a process for applying a roll-on, shrink label to a container using the hot-melt adhesives of the invention.
    Type: Application
    Filed: October 12, 2009
    Publication date: May 6, 2010
    Applicant: Eastman Chemical Company
    Inventors: Marcus David Shelby, Scott Ellery George, Gary Robert Robe, Freddie Wayne Williams, Michael Eugene Donelson, Joshua Seth Cannon, Candace Michele Tanner
  • Patent number: 7687143
    Abstract: Disclosed are multicomponent fibers derived from a blend of a sulfopolyester with a water non-dispersible polymer wherein the as-spun denier is less than about 6 and wherein the water dispersible sulfopolyester exhibits a melt viscosity of less than 12,000 poise measured at 240° C. at a strain rate of 1 rad/sec, wherein the sulfopolyester comprising less than about 25 mole % of residues of at least one sulfomonomer, based on the total moles of diacid or diol residues, and wherein said poly(ethylene) terephthalate has an inherent viscosity of less than 0.55 dL/g. The multicomponent fiber is capable of being drawn at a relatively high fiber speed, particularly at least about 2000 m/min, and may be used to produce microdenier fibers. Fibrous articles may be produced from the multicomponent fibers and microdenier fibers. Also disclosed is a process for multicomponent fibers, nonwoven fabrics, and microdenier webs.
    Type: Grant
    Filed: January 3, 2007
    Date of Patent: March 30, 2010
    Assignee: Eastman Chemical Company
    Inventors: Rakesh Kumar Gupta, Scott Ellery George, Daniel William Klosiewicz, Kab Sik Seo, Coralie McKenna Fleenor, Allen Lynn Crain
  • Patent number: 7635745
    Abstract: Processes for the recovery of a sulfopolyester polymer from an aqueous dispersion and a sulfopolyester concentrate are provided. Particularly, a sulfopolyester concentrate, from which the sulfopolyester may be recovered and reused, are formed by processes such as evaporation and/or nanofiltration. Final recovery of the sulfopolyester may be achieved by further evaporation of water and/or salt precipitation. In addition, the recovered sulfopolyester and articles manufactured from the recovered sulfopolyester are also provided.
    Type: Grant
    Filed: January 31, 2006
    Date of Patent: December 22, 2009
    Assignee: Eastman Chemical Company
    Inventors: Rakesh Kumar Gupta, Allen Lynn Crain, Daniel William Klosiewicz, Scott Ellery George, Kab Sik Seo
  • Publication number: 20090163402
    Abstract: A polyester textile softening agent comprising the reaction product of from about 1 to about 99 mole %, based on the total mole % of hydroxyl equivalents, of at least one glycol having a number average molecular weight of less than about 300 grams/mole; a difunctional sulfomonomer containing at least one metal sulfonate group bonded to an aromatic ring wherein the functional groups are ester, carboxyl, or hydroxyl in an amount to provide water dispersibility to the polyester; from about 1 to about 99 mole % a diacid other than a sulfomonomer; and from about 99 to about 1 mole % of a second glycol having a number average molecular weight greater than about 300 grams/mole. An aqueous dispersion comprising the textile softening agent and amount of water sufficient to disperse the textile softening agent is also disclosed.
    Type: Application
    Filed: December 19, 2007
    Publication date: June 25, 2009
    Applicant: EASTMAN CHEMICAL COMPANY
    Inventor: Scott Ellery George
  • Publication number: 20080160859
    Abstract: A process for making a nonwoven fabric is provided comprising: (A) collecting multicomponent fibers to form a non-woven web; wherein the multicomponent fiber comprises at least one water dispersible sulfopolyester and at least one water non-dispersible polymer; wherein said multicomponent fiber has a plurality of domains comprising the water non-dispersible polymer; wherein the domains are substantially isolated from each other by the water dispersible sulfopolyester intervening between the domains; (B) contacting the non-woven web with water at a sufficient temperature and pressure to remove a portion of the water dispersible sulfopolyester thereby forming a microfiber web; and (C) hydroentangling the microfiber web to produce the nonwoven fabric. A process is also provided wherein steps (B) and (C) are combined. Fibrous articles utilizing the nonwoven fabrics are also provided.
    Type: Application
    Filed: January 3, 2007
    Publication date: July 3, 2008
    Inventors: Rakesh Kumar Gupta, Daniel William Klosiewicz, Scott Ellery George
  • Patent number: 6989193
    Abstract: Disclosed are water-dispersible fibers derived from sulfopolyesters having a Tg of at least 25° C. The fibers may contain a single sulfopolyester or a blend of a sulfopolyester with a water-dispersible or water-nondispersible polymer. Also disclosed are multicomponent fibers comprising a water dispersible sulfopolyester having a Tg of at least 57° C. and a water non-dispersible polymer. The multicomponent fibers may be used to produce microdenier fibers. Fibrous articles may be produced from the water-dispersible fibers, multicomponent fibers, and microdenier fibers. The fibrous articles include water-dispersible and microdenier nonwoven webs, fabrics, and multilayered articles such as wipes, gauze, tissue, diapers, panty liners, sanitary napkins, bandages, and surgical dressings. Also disclosed is a process for water-dispersible fibers, nonwoven fabrics, and microdenier webs.
    Type: Grant
    Filed: May 20, 2004
    Date of Patent: January 24, 2006
    Inventors: William Alston Haile, Scott Ellery George, Wesley Raymond Hale, Waylon Lewellyn Jenkins
  • Publication number: 20040260034
    Abstract: Disclosed are water-dispersible fibers derived from sulfopolyesters having a Tg of at least 25° C. The fibers may contain a single sulfopolyester or a blend of a sulfopolyester with a water-dispersible or water-nondispersible polymer. Also disclosed are fibrous articles from the water-dispersible fibers. The fibrous articles include water-dispersible nonwoven webs, fabrics, and multilayered articles such as wipes, gauze, tissue, diapers, panty liners, sanitary napkins, bandages, and surgical dressings. Also disclosed is a process for water-dispersible fibers and nonwoven fabrics. The fibers and fibrous articles have further applications in flushable personal care and cleaning products, disposable protective outerwear, and laminating binders.
    Type: Application
    Filed: June 19, 2003
    Publication date: December 23, 2004
    Inventors: William Alston Haile, Waylon Lewellyn Jenkins, Scott Ellery George, Wesley Raymond Hale
  • Publication number: 20040258910
    Abstract: Disclosed are water-dispersible fibers derived from sulfopolyesters having a Tg of at least 25° C. The fibers may contain a single sulfopolyester or a blend of a sulfopolyester with a water-dispersible or water-nondispersible polymer. Also disclosed are multicomponent fibers comprising a water dispersible sulfopolyester having a Tg of at least 57° C. and a water non-dispersible polymer. The multicomponent fibers may be used to produce microdenier fibers. Fibrous articles may be produced from the water-dispersible fibers, multicomponent fibers, and microdenier fibers. The fibrous articles include water-dispersible and microdenier nonwoven webs, fabrics, and multilayered articles such as wipes, gauze, tissue, diapers, panty liners, sanitary napkins, bandages, and surgical dressings. Also disclosed is a process for water-dispersible fibers, nonwoven fabrics, and microdenier webs.
    Type: Application
    Filed: May 20, 2004
    Publication date: December 23, 2004
    Inventors: William Alston Haile, Scott Ellery George, Wesley Raymond Hale, Waylon Lewellyn Jenkins
  • Patent number: 6706399
    Abstract: The present invention provides an article of manufacture having a coating or is otherwise surrounded in large measure by a second polymer which has non-blocking characteristics. In a preferred embodiment, the article possesses a core polymer which has a Tg of less than 25° C. which is coated with or otherwise surrounded by a second polymer which has a Tg of greater than 25° C., but less than 230° C. Further, preferred core polymers have a number average molecular weight of about 3000 to about 100,000. A further feature of the articles of the present invention is that when heated to temperatures of about 100 to 300° C., they undergo an ester exchange reaction to provide a substantially homogeneous polymer product useful in hot melt adhesive applications.
    Type: Grant
    Filed: August 29, 2000
    Date of Patent: March 16, 2004
    Assignee: Eastman Chemical Company
    Inventors: Scott Ellery George, Coralie McKenna Fleenor, David T. Bowers, Richard Anthony Miller, Ricky Thompson
  • Patent number: 6616998
    Abstract: A heat sealable packaging film producing a peelable seal is formed from a blend of 99 to 75 weight percent of a copolyester and 1 to 25 weight percent of an epoxy-containing impact modifying polymer. The copolyester has a diacid component of at least 50 mole percent terephthalic acid, naphthalenedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, or mixtures thereof and diol component of about 90 to 35 mole percent ethylene glycol and 10 to 65 mole percent of at least one of diethylene glycol or 1,4-cyclohexanedimethanol.
    Type: Grant
    Filed: April 2, 2001
    Date of Patent: September 9, 2003
    Assignee: Eastman Chemical Company
    Inventors: Kathleen Diane Greer, James Edward Rhein, Hubertus Jacobus Wilhelmus Moolenaar, Scott Ellery George, Richard Leon McConnell
  • Publication number: 20030124367
    Abstract: The polyester-polyethers of the present invention are block copolymers wherein the polyester component may be crystalline or amorphous, while the polyether component is comprised of a polyethylene glycol having a molecular weight from about 990 to 3600 g/mole. Optionally, salts of 5-sulfoisophthalic acid (5-SIPA) may be included in the polyester component for superior static dissipative performance. Low levels of 5-SIPA, 0.05-5 mole %, are surprisingly effective at enhancing static dissipative performance. One aspect of this invention relates to antistatic blends having very low ionic extractables.
    Type: Application
    Filed: December 3, 2002
    Publication date: July 3, 2003
    Inventors: Scott Ellery George, Douglas Stephens McWilliams, Rodney Scott Armentrout