Patents by Inventor Scott Farris

Scott Farris has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11136024
    Abstract: Methods and systems for assessing, detecting, and responding to malfunctions involving components of autonomous vehicles and/or smart homes are described herein. Autonomous operation features and related components can be assessed using direct or indirect data regarding operation. Vehicle collision and/or smart home incident monitoring, damage detection, and responses are also described, with particular focus on the particular challenges associated with incident response for unoccupied vehicles and/or smart homes. Operating data associated with the autonomous vehicle and/or smart home may be received. Within the operating data, a divergence between sensor data from one or more sensors and control data from one or more autonomous operation features may be identified. Based on the divergence, it may be determined that an incident has occurred. Accordingly, a response to the incident may be determined. The response may be implemented by the autonomous vehicle and/or smart home.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: October 5, 2021
    Assignee: STATE FARM MUTUAL AUTOMOBILE INSURANCE COMPANY
    Inventors: Blake S. Konrardy, Gregory L. Hayward, Scott Farris, Scott T. Christensen
  • Publication number: 20210294877
    Abstract: Methods and systems for assessing, detecting, and responding to malfunctions involving components of autonomous vehicles and/or smart homes are described herein. Autonomous operation features and related components can be assessed using direct or indirect data regarding operation to determine the robustness of autonomous systems, including the use of virtual assessment of software components within a simulated environment. A server may retrieve one or more routines associated with autonomous operation. The server may also generate a set of test data associated with test conditions. The server may also execute an emulator that virtually simulates autonomous environment. The test data may be presented to the routines executing in the emulator to generate output data. The server may then analyze the output data to determine a quality metric.
    Type: Application
    Filed: January 18, 2017
    Publication date: September 23, 2021
    Inventors: Blake Konrardy, Scott T. Christensen, Gregory Hayward, Scott Farris
  • Publication number: 20210295439
    Abstract: Methods and systems for assessing, detecting, and responding to malfunctions involving components of autonomous vehicles and/or smart homes are described herein. A risk of malfunction and/or cyber-attack may be determined by collecting operating data from a plurality of autonomous vehicles and/or smart homes. The operating data may be analyzed to identify occurrences of a component malfunctioning. For each component, a risk associated with malfunctioning and/or cyber-attack may be determined based upon the identified occurrences. Based on the risks, at least one result associated with the malfunction and/or cyber-attack may be determined. A component profile may be generated based upon the determined risk and/or the impact of the determined results.
    Type: Application
    Filed: January 18, 2017
    Publication date: September 23, 2021
    Inventors: Blake Konrardy, Scott T. Christensen, Gregory Hayward, Scott Farris
  • Publication number: 20210293572
    Abstract: Methods and systems for autonomous and semi-autonomous vehicle routing are disclosed. Roadway suitability for autonomous operation is scored to facilitate use in route determination. Maps of roadways suitable for various levels of autonomous operation may be generated. Such map data may be used by autonomous vehicles or other computer devices in determining routes based upon criteria for vehicle trips. Such routes may be automatically updated based upon changes in road conditions, vehicle conditions, operator conditions, or environmental conditions. Emergency routing using such map data is described, such as automatic routing and travel when a passenger is experiencing a medical emergency.
    Type: Application
    Filed: March 25, 2019
    Publication date: September 23, 2021
    Applicant: State Farm Mutual Automobile Insurance Company
    Inventors: Blake Konrardy, Scott T. Christensen, Gregory Hayward, Scott Farris
  • Publication number: 20210294322
    Abstract: Methods and systems for assessing, detecting, and responding to malfunctions involving components of autonomous vehicles and/or smart homes are described herein. A risk of malfunction and/or cyber-attack may be determined by collecting operating data from a plurality of autonomous vehicles and/or smart homes. The operating data may be analyzed to identify occurrences of a component malfunctioning. For each component, a risk associated with malfunctioning and/or cyber-attack may be determined based upon the identified occurrences. Based on the risks, at least one result associated with the malfunction and/or cyber-attack may be determined. A component profile may be generated based upon the determined risk and/or the impact of the determined results.
    Type: Application
    Filed: November 2, 2018
    Publication date: September 23, 2021
    Applicant: State Farm Mutual Automobile Insurance Company
    Inventors: Blake Konrardy, Scott T. Christensen, Gregory Hayward, Scott Farris
  • Publication number: 20210294350
    Abstract: Methods and systems for communicating between autonomous vehicles are described herein. Such communication may be performed for signaling, collision avoidance, path coordination, and/or autonomous control. Several communications from autonomous vehicles may be received at a computing device, where the autonomous vehicles are travelling within a threshold distance of each other. Each communication may include an indication of the next waypoint on a route for the respective vehicle. The computing device may analyze the communications to determine maneuvers for the autonomous vehicles so that each autonomous vehicle may navigate to the corresponding waypoint in the least amount of time or distance. The computing device also may cause each of the autonomous vehicles to move in accordance with the maneuvers for the respective vehicle.
    Type: Application
    Filed: November 21, 2018
    Publication date: September 23, 2021
    Applicant: State Farm Mutual Automobile Insurance Company
    Inventors: Blake Konrardy, Scott T. Christensen, Gregory Hayward, Scott Farris
  • Patent number: 11126184
    Abstract: Methods and systems autonomously parking and retrieving vehicles are disclosed. Available parking spaces or parking facilities may be identified, and the vehicle may be navigated to an available space from a drop-off location without passengers. Special-purpose sensors, GPS data, or wireless signal triangulation may be used to identify vehicles and available parking spots. Upon a user request or a prediction of upcoming user demand, the vehicle may be retrieved autonomously from a parking space. Other vehicles may be autonomously moved to facilitate parking or retrieval.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: September 21, 2021
    Assignee: State Farm Mutual Automobile Insurance Company
    Inventors: Blake Konrardy, Scott T. Christensen, Gregory Hayward, Scott Farris
  • Patent number: 11127083
    Abstract: Methods and systems for monitoring use, determining risk, and alerting an operator of a vehicle having one or more autonomous (and/or semi-autonomous) operation features are provided. According to certain aspects, operating data from sensors within the vehicle may be used to determine risks associated with use of the features, which may include use at particular levels or with certain settings. The risk levels may be compared with warning thresholds to determine whether safe operation may be maintained under the operating conditions. When the risk levels exceed a threshold, a warning may be generated and presented to the vehicle operator, which may include information regarding the risks. The vehicle operator may then change the use levels or select an option to change the use levels of the features. The response of the vehicle operator may be used to determine or adjust aspects of an insurance policy associated with the vehicle.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: September 21, 2021
    Assignee: STATE FARM MUTUAL AUTOMOBILE INSURANCE COMPANY
    Inventors: Blake Konrardy, Scott T. Christensen, Gregory Hayward, Scott Farris
  • Patent number: 11127086
    Abstract: Methods and systems for determining fault for an accident involving a vehicle having one or more autonomous (and/or semi-autonomous) operation features are provided. According to certain aspects, operating data from sensors within or near the vehicle may be used to determine the occurrence of a vehicle accident, such as a collision. The operating data may further be used to determine an allocation of fault for the accident between a vehicle operator, the autonomous operation features, or a third party. The allocation of fault may be used to adjust risk levels or profiles associated with the vehicle operator or with the autonomous operation features.
    Type: Grant
    Filed: June 8, 2020
    Date of Patent: September 21, 2021
    Assignee: STATE FARM MUTUAL AUTOMOBILE INSURANCE COMPANY
    Inventors: Blake Konrardy, Scott T. Christensen, Gregory Hayward, Scott Farris
  • Patent number: 11124186
    Abstract: Methods and systems for communicating between autonomous vehicles are described herein. Such communication may be performed for signaling, collision avoidance, path coordination, and/or autonomous control. An autonomous vehicle may determine an upcoming maneuver for the autonomous vehicle and identify a vehicle signal which is indicative of the upcoming maneuver. Then the autonomous vehicle may present the vehicle signal. After presenting the vehicle signal, the autonomous vehicle may perform the maneuver.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: September 21, 2021
    Assignee: State Farm Mutual Automobile Insurance Company
    Inventors: Blake Konrardy, Scott T. Christensen, Gregory Hayward, Scott Farris
  • Patent number: 11119477
    Abstract: Methods and systems for autonomous and semi-autonomous vehicle control relating to anomalies are disclosed. Anomalous conditions with a vehicle operating environment, such as ice patches or flooded roads, may be identified and categorized using autonomous vehicle operating data, and corrective actions to mitigate the impact of such anomalies may be taken. Corrective actions may include maneuvering the vehicle in the area of the anomaly or rerouting the vehicle around the area of the anomaly. A vehicle encountering an anomaly may further communicate an alert to warn other nearby vehicles, including non-autonomous vehicles. Such communication may be limited to anomalies of certain types or severity, and duplicative communications may be suppressed. Vehicles receiving such alerts may take corrective actions or present information regarding the anomaly for operator response.
    Type: Grant
    Filed: January 18, 2017
    Date of Patent: September 14, 2021
    Assignee: STATE FARM MUTUAL AUTOMOBILE INSURANCE COMPANY
    Inventors: Blake Konrardy, Scott T. Christensen, Gregory Hayward, Scott Farris
  • Patent number: 11100591
    Abstract: Methods and systems for monitoring use, determining risk, and recommending usage levels of one or more autonomous (and/or semi-autonomous) operation features of a vehicle are provided. According to certain aspects, operating data from sensors within the vehicle may be used to determine risks associated with use of the features, which may include use at particular levels or with certain settings. The operating data may further be used to determine optimal or suggested use levels for the features. When the actual and suggested use levels differ, an alert may be generated and presented to the vehicle operator indicating suggested changes. The vehicle operator may then change the use levels or select an option to change the usage to the suggested use levels. The response of the vehicle operator may be used to determine or adjust aspects of an insurance policy associated with the vehicle.
    Type: Grant
    Filed: July 25, 2019
    Date of Patent: August 24, 2021
    Assignee: STATE FARM MUTUAL AUTOMOBILE INSURANCE COMPANY
    Inventors: Blake Konrardy, Scott T. Christensen, Gregory Hayward, Scott Farris
  • Publication number: 20210254807
    Abstract: An automotive headlamp is provided that includes a digital micromirror device (DMD) headlight module, the DMD headlight module including a DMD, a white light module to provide a white light beam to illuminate the DMD, illumination optics optically coupled between the DMD and the white light module to prepare the white light beam for illuminating the DMD, and projection optics optically coupled to the DMD to receive pixelated light reflected by the DMD and project a pixelated light beam on road, in which at least one of the DMD, the white light module, and the illumination optics shape a beam profile of the white light beam such that the light reflected by the DMD has a pixelated non-uniform beam profile suitable for projecting a white light beam that forms a portion of a white light beam of the headlamp.
    Type: Application
    Filed: April 7, 2021
    Publication date: August 19, 2021
    Inventors: Vikrant R. Bhakta, Jeffrey Scott Farris
  • Patent number: 11080794
    Abstract: Methods and systems for determining the effectiveness of one or more autonomous (and/or semi-autonomous) operation features of a vehicle are provided. According to certain aspects, information regarding autonomous operation features of the vehicle may be used to determine an effectiveness metric indicative of the ability of each autonomous operation feature to avoid or mitigate accidents or other losses. The information may include operating data from the vehicle or other vehicles having similar autonomous operation features, test data, or loss data from other vehicles. The determined effectiveness metric may then be used to determine part or all of an insurance policy, which may be reviewed by an insured and updated based upon the effectiveness metric.
    Type: Grant
    Filed: June 8, 2020
    Date of Patent: August 3, 2021
    Assignee: STATE FARM MUTUAL AUTOMOBILE INSURANCE COMPANY
    Inventors: Blake Konrardy, Scott T. Christensen, Gregory Hayward, Scott Farris
  • Patent number: 11062396
    Abstract: Methods and systems for evaluating the effectiveness of autonomous operation features of autonomous vehicles are provided. According to certain aspects, information regarding autonomous operation features associated with a vehicle may be determined and used to determine a likelihood of an accident for the vehicle. Determining the likelihood of an accident may include determining risk factors for the features related to the ability of the features to make control decisions that successfully avoid accidents. This may include reference to test data or actual loss data associated with the features, as well as usage data regarding expected use of the features during vehicle operation. Effectiveness of the features may be evaluated relative to location or operating conditions, as well as types and severity of accidents. The determined effectiveness of the features of a vehicle may further be used to determine or adjust aspects of an insurance policy associated with the vehicle.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: July 13, 2021
    Assignee: STATE FARM MUTUAL AUTOMOBILE INSURANCE COMPANY
    Inventors: Blake Konrardy, Scott T. Christensen, Gregory Hayward, Scott Farris
  • Patent number: 11062414
    Abstract: Methods and systems for identifying autonomous vehicle users are described herein. An autonomous vehicle may receive a request to transport a first user to a first destination location. While travelling along a route to the first destination location, the autonomous vehicle may receive a request to pick up a second user at a second starting location and transport the second user to a second destination location. The autonomous vehicle may travel to the second starting location when the second user is within the threshold distance of the autonomous vehicle. Upon arriving at the second starting location, the autonomous vehicle may detect whether a person approaching the vehicle is the second user by detecting a biometric identifier for the person. As a result, the second user may be allowed to enter the autonomous vehicle and/or the autonomous vehicle may begin travelling to the second destination location.
    Type: Grant
    Filed: January 18, 2017
    Date of Patent: July 13, 2021
    Assignee: STATE FARM MUTUAL AUTOMOBILE INSURANCE COMPANY
    Inventors: Blake Konrardy, Scott T. Christensen, Gregory Hayward, Scott Farris
  • Patent number: 11062395
    Abstract: Methods and systems for determining fault for an accident involving a vehicle having one or more autonomous and/or semi-autonomous operation features are provided. According to certain aspects, performance data indicative of the performance of the features may be used to determine fault for a vehicle accident, such as a collision, by allocating fault for the accident between a vehicle operator, the autonomous operation features, or a third party. The allocation of fault may be used to determine an adjustment to an insurance policy and/or adjust coverage levels for an insurance policy. The allocation of fault may further be used to adjust risk levels or profiles associated with the autonomous or semi-autonomous operation features, which may be applied to other vehicles having the same or similar features.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: July 13, 2021
    Assignee: STATE FARM MUTUAL AUTOMOBILE INSURANCE COMPANY
    Inventors: Blake Konrardy, Scott T. Christensen, Gregory Hayward, Scott Farris
  • Patent number: 11062399
    Abstract: Methods and systems are provided for monitoring use of a vehicle having one or more autonomous (and/or semi-autonomous) operation features to determine and respond to incidents, such as collisions, thefts, or breakdowns. According to certain aspects, operating data from sensors within or near the vehicle may be used to determine when an incident has occurred and determine an appropriate response. The responses may include contacting a third party to provide assistance, such as local emergency services. In some embodiments, occurrence of the incident may be verified by automated communication with the vehicle operator.
    Type: Grant
    Filed: November 4, 2019
    Date of Patent: July 13, 2021
    Assignee: STATE FARM MUTUAL AUTOMOBILE INSURANCE COMPANY
    Inventors: Blake S. Konrardy, Scott T. Christensen, Gregory L. Hayward, Scott Farris
  • Patent number: 11022978
    Abstract: Methods and systems for autonomous and semi-autonomous vehicle routing are disclosed. Roadway suitability for autonomous operation is scored to facilitate use in route determination. Maps of roadways suitable for various levels of autonomous operation may be generated. Such map data may be used by autonomous vehicles or other computer devices in determining routes based upon criteria for vehicle trips. Such routes may be automatically updated based upon changes in road conditions, vehicle conditions, operator conditions, or environmental conditions. Emergency routing using such map data is described, such as automatic routing and travel when a passenger is experiencing a medical emergency.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: June 1, 2021
    Assignee: State Farm Mutual Automobile Insurance Company
    Inventors: Blake Konrardy, Scott T. Christensen, Gregory Hayward, Scott Farris
  • Patent number: 11023629
    Abstract: Methods and systems for testing the operation of autonomous or semi-autonomous operation features in a virtual test environment are provided. Computer-executable instructions for implementing the features may be received and executed on a test device. Test input signals may be presented to software routines associated with the features, which may generate output signals including control commands. The output signals may be used to predict the response of a vehicle in the virtual test environment, which may include a simulation of vehicle responses to the output signals. Measures of the effectiveness of the features may be determined based upon the predicted responses of the vehicle, which may then be used to determine risk levels associated with the features.
    Type: Grant
    Filed: December 7, 2018
    Date of Patent: June 1, 2021
    Assignee: STATE FARM MUTUAL AUTOMOBILE INSURANCE COMPANY
    Inventors: Blake Konrardy, Scott T. Christensen, Gregory Hayward, Scott Farris