Patents by Inventor Scott Farris

Scott Farris has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9940834
    Abstract: Methods and systems for communicating between autonomous vehicles are described herein. Such communication may be performed for signaling, collision avoidance, path coordination, and/or autonomous control. A computing device may receive communications from autonomous vehicles, where the communications include data for the same road segment, including an indication of a condition of the road segment. The computing device may combine the data for the same road segment to generate an overall indication of the condition of the road segment, which may include a recommendation to vehicles approaching the road segment. Additionally, the computing device may receive a request from a mobile device within a vehicle approaching the road segment to display vehicle data. The overall indication for the road segment may then be displayed on a user interface of the mobile device.
    Type: Grant
    Filed: January 18, 2017
    Date of Patent: April 10, 2018
    Assignee: STATE FARM MUTUAL AUTOMOBILE INSURANCE COMPANY
    Inventors: Blake Konrardy, Scott T. Christensen, Gregory Hayward, Scott Farris
  • Publication number: 20180075538
    Abstract: Methods and systems for determining the effectiveness of one or more autonomous (and/or semi-autonomous) operation features of a vehicle are provided. According to certain aspects, information regarding autonomous operation features of the vehicle may be used to determine an effectiveness metric indicative of the ability of each autonomous operation feature to avoid or mitigate accidents or other losses. The information may include operating data from the vehicle or other vehicles having similar autonomous operation features, test data, or loss data from other vehicles. The determined effectiveness metric may then be used to determine part or all of an insurance policy, which may be reviewed by an insured and updated based upon the effectiveness metric.
    Type: Application
    Filed: November 8, 2017
    Publication date: March 15, 2018
    Inventors: Blake Konrardy, Scott T. Christensen, Gregory Hayward, Scott Farris
  • Patent number: 9907135
    Abstract: For controlling a level of luminance produced by a color light-emitting diode (LED) array, a method includes: for a predetermined flux bit-slice period, activating a color enable signal to select a primary color LED and to select a predetermined light flux magnitude set-point; selectively charging an energy storage device and discharging the energy storage device through the selected primary color LED to generate a light flux output during the flux bit-slice period; adjusting a rate of selectively charging the energy storage device to maintain a magnitude of the light flux output at the predetermined light flux magnitude set-point during the flux bit-slice period; and adjusting the predetermined light flux magnitude set-point over the life of the selected LED as the selected LED ages as a function of an anode-to-cathode voltage drop across the selected LED for a given magnitude of current flowing through the selected LED.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: February 27, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Jeffrey Scott Farris, Michael David McCormick, Jason Ryan Thompson
  • Patent number: 9858621
    Abstract: Methods and systems for determining the effectiveness of one or more autonomous (and/or semi-autonomous) operation features of a vehicle are provided. According to certain aspects, information regarding autonomous operation features of the vehicle may be used to determine an effectiveness metric indicative of the ability of each autonomous operation feature to avoid or mitigate accidents or other losses. The information may include operating data from the vehicle or other vehicles having similar autonomous operation features, test data, or loss data from other vehicles. The determined effectiveness metric may then be used to determine part or all of an insurance policy, which may be reviewed by an insured and updated based upon the effectiveness metric.
    Type: Grant
    Filed: May 15, 2015
    Date of Patent: January 2, 2018
    Assignee: STATE FARM MUTUAL AUTOMOBILE INSURANCE COMPANY
    Inventors: Blake Konrardy, Scott T. Christensen, Gregory Hayward, Scott Farris
  • Patent number: 9852475
    Abstract: Methods and systems for evaluating the effectiveness of autonomous operation features of autonomous vehicles using an accident risk model are provided. According to certain aspects, an accident risk model may be determined using effectiveness information regarding autonomous operation features associated with a vehicle. The effectiveness information may indicate a likelihood of an accident for the vehicle and may include test data or actual loss data. Determining the likelihood of an accident may include determining risk factors for the features related to the ability of the features to make control decisions that successfully avoid accidents. The accident risk model may further include information regarding effectiveness of the features relative to location or operating conditions, as well as types and severity of accidents. The accident risk model may further be used to determine or adjust aspects of an insurance policy associated with an autonomous vehicle.
    Type: Grant
    Filed: May 15, 2015
    Date of Patent: December 26, 2017
    Assignee: STATE FARM MUTUAL AUTOMOBILE INSURANCE COMPANY
    Inventors: Blake Konrardy, Scott T. Christensen, Gregory Hayward, Scott Farris
  • Publication number: 20170357000
    Abstract: In described examples, a spatial light modulator (SLM) receives light from a field of view. The SLM includes a two-dimensional array of picture elements in rows and columns. In response to a transmit scan beam that illuminates the field of view, a portion of the two-dimensional array is impacted by light reflected from a region of interest. The portion of the two-dimensional array is determined. Light is directed from the portion of the two-dimensional array to a photodiode. Light that impacts the two-dimensional array outside the portion is directed away from the photodiode.
    Type: Application
    Filed: June 9, 2017
    Publication date: December 14, 2017
    Inventors: Terry A. Bartlett, Nirmal C. Warke, David P. Magee, Jeffrey Scott Farris, Patrick Ian Oden
  • Patent number: 9805423
    Abstract: Methods and systems for determining fault for an accident involving a vehicle having one or more autonomous and/or semi-autonomous operation features are provided. According to certain aspects, performance data indicative of the performance of the features may be used to determine fault for a vehicle accident, such as a collision, by allocating fault for the accident between a vehicle operator, the autonomous operation features, or a third party. The allocation of fault may be used to determine an adjustment to an insurance policy and/or adjust coverage levels for an insurance policy. The allocation of fault may further be used to adjust risk levels or profiles associated with the autonomous or semi-autonomous operation features, which may be applied to other vehicles having the same or similar features.
    Type: Grant
    Filed: May 15, 2015
    Date of Patent: October 31, 2017
    Assignee: STATE FARM MUTUAL AUTOMOBILE INSURANCE COMPANY
    Inventors: Blake Konrardy, Scott T. Christensen, Gregory Hayward, Scott Farris
  • Patent number: 9792656
    Abstract: Methods and systems for determining fault for an accident involving a vehicle having one or more autonomous (and/or semi-autonomous) operation features and paying claims associated with such accidents are provided. According to certain aspects, operating data from sensors within or near the vehicle may be used to determine the occurrence of a vehicle accident, such as a collision. The operating data may further be used to determine an allocation of fault for the accident between a vehicle operator, the autonomous operation features, or a third party. The allocation of fault may be used to further determine and make claims payments related to the accident. In some embodiments, claims may be rejected based upon the operating data and determined allocation of fault.
    Type: Grant
    Filed: May 15, 2015
    Date of Patent: October 17, 2017
    Assignee: STATE FARM MUTUAL AUTOMOBILE INSURANCE COMPANY
    Inventors: Blake Konrardy, Scott T. Christensen, Gregory Hayward, Scott Farris
  • Patent number: 9767516
    Abstract: Methods and systems for monitoring use, determining risk, and alerting an operator of a vehicle having one or more autonomous (and/or semi-autonomous) operation features are provided. According to certain aspects, operating data from sensors within the vehicle may be used to determine risks associated with use of the features, which may include use at particular levels or with certain settings. The risk levels may be compared with warning thresholds to determine whether safe operation may be maintained under the operating conditions. When the risk levels exceed a threshold, a warning may be generated and presented to the vehicle operator, which may include information regarding the risks. The vehicle operator may then change the use levels or select an option to change the use levels of the features. The response of the vehicle operator may be used to determine or adjust aspects of an insurance policy associated with the vehicle.
    Type: Grant
    Filed: May 15, 2015
    Date of Patent: September 19, 2017
    Assignee: STATE FARM MUTUAL AUTOMOBILE INSURANCE COMPANY
    Inventors: Blake Konrardy, Scott T. Christensen, Gregory Hayward, Scott Farris
  • Patent number: 9754325
    Abstract: Methods and systems for monitoring use and determining risks associated with operation of a vehicle having one or more autonomous operation features are provided. According to certain aspects, a virtual log of data regarding performance of the features in a non-test environment may be recorded during operation of the vehicle. This may include information regarding the vehicle, the vehicle environment, use of the autonomous operation features, and/or control decisions made by the features. The control decisions may include evasive maneuvers performed by the vehicle under the control of the features. The performance data in the virtual log may be used to determine risk levels associated with vehicle operation by the autonomous operation features. The risk levels may further be used to adjust an insurance policy associated with the vehicle.
    Type: Grant
    Filed: May 15, 2015
    Date of Patent: September 5, 2017
    Assignee: STATE FARM MUTUAL AUTOMOBILE INSURANCE COMPANY
    Inventors: Blake Konrardy, Scott T. Christensen, Gregory Hayward, Scott Farris
  • Patent number: 9715711
    Abstract: Methods and systems for monitoring use, determining risk, and pricing insurance policies for an autonomous vehicle having one or more autonomous operation features are provided. According to certain aspects, accident risk factors may be determined for autonomous operation features of the vehicle using information regarding the autonomous operation features of the vehicle or other accident related factors associated with the vehicle. The accident risk factors may indicate the ability of the autonomous operation features to avoid accidents during operation, particularly without vehicle operator intervention. The accident risk levels determined for a vehicle may further be used to determine or adjust aspects of an insurance policy associated with the vehicle.
    Type: Grant
    Filed: May 15, 2015
    Date of Patent: July 25, 2017
    Assignee: STATE FARM MUTUAL AUTOMOBILE INSURANCE COMPANY
    Inventors: Blake Konrardy, Scott T. Christensen, Gregory Hayward, Scott Farris
  • Publication number: 20170135164
    Abstract: For controlling a level of luminance produced by a color light-emitting diode (LED) array, a method includes: for a predetermined flux bit-slice period, activating a color enable signal to select a primary color LED and to select a predetermined light flux magnitude set-point; selectively charging an energy storage device and discharging the energy storage device through the selected primary color LED to generate a light flux output during the flux bit-slice period; adjusting a rate of selectively charging the energy storage device to maintain a magnitude of the light flux output at the predetermined light flux magnitude set-point during the flux bit-slice period; and adjusting the predetermined light flux magnitude set-point over the life of the selected LED as the selected LED ages as a function of an anode-to-cathode voltage drop across the selected LED for a given magnitude of current flowing through the selected LED.
    Type: Application
    Filed: January 20, 2017
    Publication date: May 11, 2017
    Inventors: Jeffrey Scott Farris, Michael David McCormick, Jason Ryan Thompson
  • Patent number: 9646428
    Abstract: Methods and systems are provided for monitoring use of a vehicle having one or more autonomous (and/or semi-autonomous) operation features to determine and respond to incidents, such as collisions, thefts, or breakdowns. According to certain aspects, operating data from sensors within or near the vehicle may be used to determine when an incident has occurred and determine an appropriate response. The responses may include contacting a third party to provide assistance, such as local emergency services. In some embodiments, occurrence of the incident may be verified by automated communication with the vehicle operator.
    Type: Grant
    Filed: May 15, 2015
    Date of Patent: May 9, 2017
    Assignee: STATE FARM MUTUAL AUTOMOBILE INSURANCE COMPANY
    Inventors: Blake Konrardy, Scott T. Christensen, Gregory Hayward, Scott Farris
  • Patent number: 9554435
    Abstract: Light flux levels sensed from a color LED array control both current availability to the array and disable/re-enable a current bypass switch to shunt stored-energy current to or away from a selected LED. In continuous mode, a single flux pulse is created for the duration of a pre-established period. Feedback from the flux sensor pulses current to an energy storage device to maintain the light flux at a predetermined set-point. A particular dimming level is achieved by establishing both the pulse period and the flux magnitude. In discontinuous mode, one or more short flux pulses are created. Both the turn-on and the turn-off time of each flux pulse is controlled by alternately removing and then re-establishing a current shunt from the energy storage device to ground. Flux pulse magnitude is controlled by recognizing when the flux pulse has reached a predetermined set-point and re-establishing the current shunt to abruptly turn off current to the selected LED.
    Type: Grant
    Filed: September 18, 2013
    Date of Patent: January 24, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Jeffrey Scott Farris, Michael David McCormick, Jason Ryan Thompson
  • Patent number: 9429977
    Abstract: A relief spring stop bolt assembly for shallow bowl coal pulverizing mills and a method of using the same to smooth operation of such a pulverizer during low load operation is described. The subject relief spring stop bolt assembly is sized to be used with or for “retrofit” within existing journal space and existing journal opening cover space of a shallow bowl mill to effectively smooth rough operating conditions.
    Type: Grant
    Filed: September 26, 2013
    Date of Patent: August 30, 2016
    Assignee: ALSTOM TECHNOLOGY LTD
    Inventors: Lawrence Scott Farris, Todd G. Williams
  • Publication number: 20150377442
    Abstract: An automotive headlamp is provided that includes a digital micromirror device (DMD) headlight module, the DMD headlight module including a DMD, a white light module to provide a white light beam to illuminate the DMD, illumination optics optically coupled between the DMD and the white light module to prepare the white light beam for illuminating the DMD, and projection optics optically coupled to the DMD to receive pixelated light reflected by the DMD and project a pixelated light beam on road, in which at least one of the DMD, the white light module, and the illumination optics shape a beam profile of the white light beam such that the light reflected by the DMD has a pixelated non-uniform beam profile suitable for projecting a white light beam that forms a portion of a white light beam of the headlamp.
    Type: Application
    Filed: June 26, 2015
    Publication date: December 31, 2015
    Inventors: Vikrant R. Bhakta, Jeffrey Scott Farris
  • Publication number: 20140096640
    Abstract: A relief spring stop bolt assembly for shallow bowl coal pulverizing mills and a method of using the same to smooth operation of such a pulverizer during low load operation is described. The subject relief spring stop bolt assembly is sized to be used with or for “retrofit” within existing journal space and existing journal opening cover space of a shallow bowl mill to effectively smooth rough operating conditions.
    Type: Application
    Filed: September 26, 2013
    Publication date: April 10, 2014
    Applicant: ALSTOM Technology Ltd
    Inventors: Lawrence Scott FARRIS, Todd G. Williams
  • Publication number: 20140085731
    Abstract: Light flux levels sensed from a color LED array control both current availability to the array and disable/re-enable a current bypass switch to shunt stored-energy current to or away from a selected LED. In continuous mode, a single flux pulse is created for the duration of a pre-established period. Feedback from the flux sensor pulses current to an energy storage device to maintain the light flux at a predetermined set-point. A particular dimming level is achieved by establishing both the pulse period and the flux magnitude. In discontinuous mode, one or more short flux pulses are created. Both the turn-on and the turn-off time of each flux pulse is controlled by alternately removing and then re-establishing a current shunt from the energy storage device to ground. Flux pulse magnitude is controlled by recognizing when the flux pulse has reached a predetermined set-point and re-establishing the current shunt to abruptly turn off current to the selected LED.
    Type: Application
    Filed: September 18, 2013
    Publication date: March 27, 2014
    Inventors: Jeffrey Scott Farris, Michael David McCormick, Jason Ryan Thompson
  • Patent number: 8132750
    Abstract: A pulverizer 60 includes a spring assembly 10 that urges a grinding roller 72 of a journal assembly 68 onto a grinding surface 66 of a grinding table 64. The force applied is monitored by a load cell 32 located within spring assembly 10 that creates an electronic signal. A controller 83 receives the electronic signal and stores and/or displays it and alternatively acts to adjust the applied force to a desired value. Alternatively, adjustable forces or mechanical dampening may be applied to journal assembly 68 by controller 83. Alternatively, additional sensors may measure displacement of the journal assembly and rotation of the grinding table for other calculations.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: March 13, 2012
    Assignee: ALSTOM Technology Ltd
    Inventors: Richard Brian Stone, Matthew Alan Munyon, Lawrence Scott Farris
  • Patent number: 8052286
    Abstract: A method includes generating a plurality of beams that each illuminate a separate portion of a spatial light modulator. The spatial light modulator has a first dimension of a first length and a second dimension of a second length. Each of the beams spans a portion of the first length of the first dimension and a portion of the second length of the second dimension. The method also includes scrolling the plurality of beams along the second dimension of the spatial light modulator while maintaining at least a first gap between each of the plurality of beams.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: November 8, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Philip Scott King, Gregory James Hewlett, Roger Mitsuo Ikeda, Jeffrey Scott Farris