Patents by Inventor Scott G. Balster

Scott G. Balster has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20030082882
    Abstract: An integrated circuit and method of fabricating the integrated circuit is disclosed. The integrated circuit includes vertical bipolar transistors (30, 50, 60), each having a buried collector region (26′). A carbon-bearing diffusion barrier (28c) is disposed over the buried collector region (26′), to inhibit the diffusion of dopant from the buried collector region (26′) into the overlying epitaxial layer (28). The diffusion barrier (28c) may be formed by incorporating a carbon source into the epitaxial formation of the overlying layer (28), or by ion implantation. In the case of ion implantation of carbon or SiGeC, masks (52, 62) may be used to define the locations of the buried collector regions (26′) that are to receive the carbon; for example, portions underlying eventual collector contacts (33, 44c) may be masked from the carbon implant so that dopant from the buried collector region (26′) can diffuse upward to meet the contact (33).
    Type: Application
    Filed: October 30, 2002
    Publication date: May 1, 2003
    Inventors: Jeffrey A. Babcock, Angelo Pinto, Manfred Schiekofer, Scott G. Balster, Gregory E. Howard, Alfred Hausler
  • Publication number: 20030062589
    Abstract: A method for manufacturing a semiconductor device includes forming a buried layer of a semiconductor substrate. An active region is formed adjacent at least a portion of the buried layer. At least part of the active region is removed to form a shallow trench opening. A dielectric layer is formed proximate the active region at least partially within the shallow trench opening. At least part of the dielectric layer is removed to form a collector contact region. A collector contact may be formed at the collector contact region. The collector contact may be operable to electrically contact the buried layer.
    Type: Application
    Filed: September 30, 2002
    Publication date: April 3, 2003
    Inventors: Jeffrey A. Babcock, Christoph Dirnecker, Angelo Pinto, Scott G. Balster, Michael Schober, Alfred Haeusler
  • Publication number: 20030062598
    Abstract: A method for manufacturing a semiconductor device includes forming a buried layer of a semiconductor substrate. An active region is formed adjacent at least a portion of the buried layer. A first isolation structure is formed adjacent at least a portion of the buried layer. A second isolation structure is formed adjacent at least a portion of the active region. A base layer is formed adjacent at least a portion of the active region. A dielectric layer is formed adjacent at least a portion of the base layer, and then at least part of the dielectric layer is removed at an emitter contact location and at a sinker contact location. An emitter structure is formed at the emitter contact location. Forming the emitter structure includes etching the semiconductor device at the sinker contact location to form a sinker contact region. The sinker contact region has a first depth. The method may also include forming a gate structure.
    Type: Application
    Filed: September 30, 2002
    Publication date: April 3, 2003
    Inventors: Angelo Pinto, Jeffrey A. Babcock, Michael Schober, Scott G. Balster, Christoph Dirnecker
  • Publication number: 20020163029
    Abstract: The present invention is directed to a structure and method of forming an integrated circuit MIM capacitor having a relatively capacitance without the need for an additional mask step. Methods of forming integrated circuit capacitors include the steps of forming a standard via and one or more enlarged vias in an electrically insulating layer during the same patterning process and then forming an electrically conductive first electrode layer which fills the standard via and overlays the enlarged vias in a conformal manner. A dielectric layer is then formed over the electrically conductive first electrode layer. Next, an electrically conductive second electrode layer is formed over the dielectric layer, which overlays and/or fills the enlarged vias. A step is then performed to planarize the second electrode layer, the dielectric layer, and the first electrode layer to define the electrodes of a capacitor.
    Type: Application
    Filed: May 4, 2001
    Publication date: November 7, 2002
    Inventors: Christoph Dirnecker, Jeffrey Babcock, Michael Schober, Scott G. Balster, Angelo Pinto
  • Publication number: 20020160562
    Abstract: High-voltage bipolar transistors (30, 60) in silicon-on-insulator (SOI) integrated circuits are disclosed. In one disclosed embodiment, an collector region (28) is formed in epitaxial silicon (24, 25) disposed over a buried insulator layer (22). A base region (32) and emitter (36) are disposed over the collector region (28). Buried collector region (31) are disposed in the epitaxial silicon (24) away from the base region (32). The transistor may be arranged in a rectangular fashion, as conventional, or alternatively by forming an annular buried collector region (31). According to another disclosed embodiment, a high voltage transistor (60) includes a central isolation structure (62), so that the base region (65) and emitter region (66) are ring-shaped to provide improved performance. A process for fabricating the high voltage transistor (30, 60) simultaneously with a high performance transistor (40) is also disclosed.
    Type: Application
    Filed: April 25, 2002
    Publication date: October 31, 2002
    Inventors: Jeffrey A. Babcock, Gregory E. Howard, Angelo Pinto, Phillipp Steinmann, Scott G. Balster
  • Patent number: 6407425
    Abstract: The instant invention describes a programmable neuron MOSFET structure formed on SOI substrates. A number of input capacitor structures (241, 231) are formed on a SOI substrate. The substrate region of the capacitors (330, 340) are completely isolated from each other by isolation structures (270). In addition the transistor structure (210) of the neuron MOSFET is completely isolated from the capacitor structures (241, 231) by the isolation structure (270). The neuron MOSFET also comprises a contiguous floating conductive layer (200, 230, and 240) which forms the gate structure of the capacitors (230, 240) and the floating gate (200) of the transistor structure.
    Type: Grant
    Filed: September 14, 2001
    Date of Patent: June 18, 2002
    Assignee: Texas Instruments Incorporated
    Inventors: Jeffrey A. Babcock, Scott G. Balster, Gregory E. Howard, Angelo Pinto, Philipp Steinmann
  • Patent number: 6391707
    Abstract: The present invention is directed to a structure and method of forming an integrated circuit MIM capacitor having a relatively capacitance without the need for an additional mask step. Methods of forming integrated circuit capacitors include the steps of forming a standard via and one or more enlarged vias in an electrically insulating layer during the same patterning process and then forming an electrically conductive first electrode layer which fills the standard via and overlays the enlarged vias in a conformal manner. A dielectric layer is then formed over the electrically conductive first electrode layer. Next, an electrically conductive second electrode layer is formed over the dielectric layer, which overlays and/or fills the enlarged vias. A step is then performed to planarize the second electrode layer, the dielectric layer, and the first electrode layer to define the electrodes of a capacitor.
    Type: Grant
    Filed: May 4, 2001
    Date of Patent: May 21, 2002
    Assignee: Texas Instruments Incorporated
    Inventors: Christoph Dirnecker, Jeffrey A. Babcock, Michael Schober, Scott G. Balster, Angelo Pinto
  • Publication number: 20020047155
    Abstract: The instant invention describes a programmable neuron MOSFET structure formed on SOI substrates. A number of input capacitor structures (241, 231) are formed on a SOI substrate. The substrate region of the capacitors (330, 340) are completely isolated from each other by isolation structures (270). In addition the transistor structure (210) of the neuron MOSFET is completely isolated from the capacitor structures (241, 231) by the isolation structure (270). The neuron MOSFET also comprises a contiguous floating conductive layer (200, 230, and 240) which forms the gate structure of the capacitors (230, 240) and the floating gate (200) of the transistor structure.
    Type: Application
    Filed: September 14, 2001
    Publication date: April 25, 2002
    Inventors: Jeffrey A. Babcock, Scott G. Balster, Gregory E. Howard, Angelo Pinto, Philipp Steinmann