Patents by Inventor Scott GRECIAN

Scott GRECIAN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11067580
    Abstract: Low-copper click chemistry, 1.3-dipolar cycloadditions, and Staudinger ligations for modifying biomolecules is provided. Compositions, methods, and kits relating to low-copper click chemistry, 1.3-dipolar cycloadditions, and Staudinger ligations are also provided.
    Type: Grant
    Filed: April 1, 2020
    Date of Patent: July 20, 2021
    Assignee: Life Technologies Corporation
    Inventors: Kyle Gee, Upinder Singh, Scott Grecian, Scott Clarke
  • Publication number: 20200333351
    Abstract: Low-copper click chemistry, 1.3-dipolar cycloadditions, and Staudinger ligations for modifying biomolecules is provided. Compositions, methods, and kits relating to low-copper click chemistry, 1.3-dipolar cycloadditions, and Staudinger ligations are also provided.
    Type: Application
    Filed: April 1, 2020
    Publication date: October 22, 2020
    Inventors: Kyle Gee, Upinder Singh, Scott Grecian, Scott Clarke
  • Patent number: 10648985
    Abstract: Low-copper click chemistry, 1.3-dipolar cycloadditions, and Staudinger ligations for modifying biomolecules is provided. Compositions, methods, and kits relating to low-copper click chemistry, 1.3-dipolar cycloadditions, and Staudinger ligations are also provided.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: May 12, 2020
    Assignee: Life Technologies Corporation
    Inventors: Kyle Gee, Upinder Singh, Scott Grecian, Scott Clarke
  • Patent number: 10632133
    Abstract: Methods of using azide-modified biomolecules, such as fatty acids, carbohydrates and lipids, to treat a plant, an insect or an animal infected with a virus or to inhibit infectivity of a virus, such as the human immunodeficiency virus, are provided. Also provided are methods of labeling a virus, such as human immunodeficiency virus, with an azide-modified biomolecule, such as a fatty acid, a carbohydrate, or an isoprenoid lipid. Also, provided are methods of tracking a virus in vivo, with an azide-modified biomolecule, such as a fatty acid, a carbohydrate, or an isoprenoid lipid. The azide-modified biomolecules may be combined with a pharmaceutically acceptable excipient to produce a pharmaceutical composition, optionally containing another anti-viral agent and/or a delivery agent, such as a liposome.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: April 28, 2020
    Assignees: THE JOHNS HOPKINS UNIVERSITY, LIFE TECHNOLOGIES CORPORATION
    Inventors: Brian Agnew, David Graham, Upinder Singh, Scott Grecian
  • Publication number: 20190105334
    Abstract: Methods of using azide-modified biomolecules, such as fatty acids, carbohydrates and lipids, to treat a plant, an insect or an animal infected with a virus or to inhibit infectivity of a virus, such as the human immunodeficiency virus, are provided. Also provided are methods of labeling a virus, such as human immunodeficiency virus, with an azide-modified biomolecule, such as a fatty acid, a carbohydrate, or an isoprenoid lipid. Also, provided are methods of tracking a virus in vivo, with an azide-modified biomolecule, such as a fatty acid, a carbohydrate, or an isoprenoid lipid. The azide-modified biomolecules may be combined with a pharmaceutically acceptable excipient to produce a pharmaceutical composition, optionally containing another anti-viral agent and/or a delivery agent, such as a liposome.
    Type: Application
    Filed: December 3, 2018
    Publication date: April 11, 2019
    Inventors: Brian Agnew, Upinder Singh, Scott Grecian
  • Publication number: 20190079095
    Abstract: Low-copper click chemistry, 1.3-dipolar cycloadditions, and Staudinger ligations for modifying biomolecules is provided. Compositions, methods, and kits relating to low-copper click chemistry, 1.3-dipolar cycloadditions, and Staudinger ligations are also provided.
    Type: Application
    Filed: August 21, 2018
    Publication date: March 14, 2019
    Inventors: Kyle Gee, Upinder Singh, Scott Grecian, Scott Clarke
  • Patent number: 10179143
    Abstract: Methods of using azide-modified biomolecules, such as fatty acids, carbohydrates and lipids, to treat a plant, an insect or an animal infected with a virus or to inhibit infectivity of a virus, such as the human immunodeficiency virus, are provided. Also provided are methods of labeling a virus, such as human immunodeficiency virus, with an azide-modified biomolecule, such as a fatty acid, a carbohydrate, or an isoprenoid lipid. Also, provided are methods of tracking a virus in vivo, with an azide-modified biomolecule, such as a fatty acid, a carbohydrate, or an isoprenoid lipid. The azide-modified biomolecules may be combined with a pharmaceutically acceptable excipient to produce a pharmaceutical composition, optionally containing another anti-viral agent and/or a delivery agent, such as a liposome.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: January 15, 2019
    Assignee: Life Technologies Corporation
    Inventors: Brian Agnew, Upinder Singh, Scott Grecian
  • Publication number: 20180092932
    Abstract: Methods of using azide-modified biomolecules, such as fatty acids, carbohydrates and lipids, to treat a plant, an insect or an animal infected with a virus or to inhibit infectivity of a virus, such as the human immunodeficiency virus, are provided. Also provided are methods of labeling a virus, such as human immunodeficiency virus, with an azide-modified biomolecule, such as a fatty acid, a carbohydrate, or an isoprenoid lipid. Also, provided are methods of tracking a virus in vivo, with an azide-modified biomolecule, such as a fatty acid, a carbohydrate, or an isoprenoid lipid. The azide-modified biomolecules may be combined with a pharmaceutically acceptable excipient to produce a pharmaceutical composition, optionally containing another anti-viral agent and/or a delivery agent, such as a liposome.
    Type: Application
    Filed: December 7, 2017
    Publication date: April 5, 2018
    Inventors: Brian Agnew, David Graham, Upinder Singh, Scott Grecian
  • Patent number: 9855287
    Abstract: Methods of using azide-modified biomolecules, such as fatty acids, carbohydrates and lipids, to treat a plant, an insect or an animal infected with a virus or to inhibit infectivity of a virus, such as the human immunodeficiency virus, are provided. Also provided are methods of labeling a virus, such as human immunodeficiency virus, with an azide-modified biomolecule, such as a fatty acid, a carbohydrate, or an isoprenoid lipid. Also, provided are methods of tracking a virus in vivo, with an azide-modified biomolecule, such as a fatty acid, a carbohydrate, or an isoprenoid lipid. The azide-modified biomolecules may be combined with a pharmaceutically acceptable excipient to produce a pharmaceutical composition, optionally containing another anti-viral agent and/or a delivery agent, such as a liposome.
    Type: Grant
    Filed: August 20, 2015
    Date of Patent: January 2, 2018
    Assignees: LIFE TECHNOLOGIES CORPORATION, THE JOHNS HOPKINS UNIVERSITY
    Inventors: Brian Agnew, David Graham, Upinder Singh, Scott Grecian
  • Publication number: 20170333457
    Abstract: Methods of using azide-modified biomolecules, such as fatty acids, carbohydrates and lipids, to treat a plant, an insect or an animal infected with a virus or to inhibit infectivity of a virus, such as the human immunodeficiency virus, are provided. Also provided are methods of labeling a virus, such as human immunodeficiency virus, with an azide-modified biomolecule, such as a fatty acid, a carbohydrate, or an isoprenoid lipid. Also, provided are methods of tracking a virus in vivo, with an azide-modified biomolecule, such as a fatty acid, a carbohydrate, or an isoprenoid lipid. The azide-modified biomolecules may be combined with a pharmaceutically acceptable excipient to produce a pharmaceutical composition, optionally containing another anti-viral agent and/or a delivery agent, such as a liposome.
    Type: Application
    Filed: August 8, 2017
    Publication date: November 23, 2017
    Inventors: Brian AGNEW, Upinder SINGH, Scott GRECIAN
  • Publication number: 20160290994
    Abstract: The invention relates to novel substrates and methods for staining live stem cells. The stain may be used to identify induced pluripotent stem cell colonies during the process of somatic cell reprogramming.
    Type: Application
    Filed: April 4, 2016
    Publication date: October 6, 2016
    Inventors: Uma LAKSHMIPATHY, Upinder SINGH, Scott GRECIAN, Rene QUINTANILLA, Kyle GEE, Mahendra RAO
  • Patent number: 9334523
    Abstract: The invention relates to novel substrates and methods for staining live stem cells. The stain may be used to identify induced pluripotent stem cell colonies during the process of somatic cell reprogramming.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: May 10, 2016
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Uma Lakshmipathy, Upinder Singh, Scott Grecian, Rene Quintanilla, Kyle Gee, Mahendra Rao
  • Publication number: 20150374723
    Abstract: Methods of using azide-modified biomolecules, such as fatty acids, carbohydrates and lipids, to treat a plant, an insect or an animal infected with a virus or to inhibit infectivity of a virus, such as the human immunodeficiency virus, are provided. Also provided are methods of labeling a virus, such as human immunodeficiency virus, with an azide-modified biomolecule, such as a fatty acid, a carbohydrate, or an isoprenoid lipid. Also, provided are methods of tracking a virus in vivo, with an azide-modified biomolecule, such as a fatty acid, a carbohydrate, or an isoprenoid lipid. The azide-modified biomolecules may be combined with a pharmaceutically acceptable excipient to produce a pharmaceutical composition, optionally containing another anti-viral agent and/or a delivery agent, such as a liposome.
    Type: Application
    Filed: August 20, 2015
    Publication date: December 31, 2015
    Inventors: Brian Agnew, David Graham, Upinder Singh, Scott Grecian
  • Patent number: 9144575
    Abstract: Methods of using azide-modified biomolecules, such as fatty acids, carbohydrates and lipids, to treat a plant, an insect or an animal infected with a virus or to inhibit infectivity of a virus, such as the human immunodeficiency virus, are provided. Also provided are methods of labeling a virus, such as human immunodeficiency virus, with an azide-modified biomolecule, such as a fatty acid, a carbohydrate, or an isoprenoid lipid. Also, provided are methods of tracking a virus in vivo, with an azide-modified biomolecule, such as a fatty acid, a carbohydrate, or an isoprenoid lipid. The azide-modified biomolecules may be combined with a pharmaceutically acceptable excipient to produce a pharmaceutical composition, optionally containing another anti-viral agent and/or a delivery agent, such as a liposome.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: September 29, 2015
    Assignees: LIFE TECHNOLOGIES CORPORATION, THE JOHNS HOPKINS UNIVERSITY
    Inventors: Brian Agnew, David Graham, Upinder Singh, Scott Grecian
  • Publication number: 20150072396
    Abstract: Low-copper click chemistry, 1.3-dipolar cycloadditions, and Staudinger ligations for modifying biomolecules is provided. Compositions, methods, and kits relating to low-copper click chemistry, 1.3-dipolar cycloadditions, and Staudinger ligations are also provided.
    Type: Application
    Filed: March 1, 2012
    Publication date: March 12, 2015
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Kyle Gee, Upinder Singh, Scott Grecian, Scott Clarke
  • Publication number: 20130323770
    Abstract: The invention relates to novel substrates and methods for staining live stem cells. The stain may be used to identify induced pluripotent stem cell colonies during the process of somatic cell reprogramming.
    Type: Application
    Filed: February 14, 2012
    Publication date: December 5, 2013
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Uma Lakshmipathy, Upinder Singh, Scott Grecian, Rene Quintanilla, Kyle Gee, Mahendra Rao
  • Publication number: 20130209364
    Abstract: Methods of using azide-modified biomolecules, such as fatty acids, carbohydrates and lipids, to treat a plant, an insect or an animal infected with a virus or to inhibit infectivity of a virus, such as the human immunodeficiency virus, are provided. Also provided are methods of labeling a virus, such as human immunodeficiency virus, with an azide-modified biomolecule, such as a fatty acid, a carbohydrate, or an isoprenoid lipid. Also, provided are methods of tracking a virus in vivo, with an azide-modified biomolecule, such as a fatty acid, a carbohydrate, or an isoprenoid lipid. The azide-modified biomolecules may be combined with a pharmaceutically acceptable excipient to produce a pharmaceutical composition, optionally containing another anti-viral agent and/or a delivery agent, such as a liposome.
    Type: Application
    Filed: July 28, 2011
    Publication date: August 15, 2013
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Brian Agnew, Upinder Singh, Scott Grecian
  • Publication number: 20130209550
    Abstract: Methods of using azide-modified biomolecules, such as fatty acids, carbohydrates and lipids, to treat a plant, an insect or an animal infected with a virus or to inhibit infectivity of a virus, such as the human immunodeficiency virus, are provided. Also provided are methods of labeling a virus, such as human immunodeficiency virus, with an azide-modified biomolecule, such as a fatty acid, a carbohydrate, or an isoprenoid lipid. Also, provided are methods of tracking a virus in vivo, with an azide-modified biomolecule, such as a fatty acid, a carbohydrate, or an isoprenoid lipid. The azide-modified biomolecules may be combined with a pharmaceutically acceptable excipient to produce a pharmaceutical composition, optionally containing another anti-viral agent and/or a delivery agent, such as a liposome.
    Type: Application
    Filed: July 28, 2011
    Publication date: August 15, 2013
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Brian Agnew, David Graham, Upinder Singh, Scott Grecian
  • Publication number: 20120028244
    Abstract: Methods of using azide-modified biomolecules, such as fatty acids, carbohydrates and lipids, to treat a plant, an insect or an animal infected with a virus or to inhibit infectivity of a virus, such as the human immunodeficiency virus, are provided. Also provided are methods of labeling a virus, such as human immunodeficiency virus, with an azide-modified biomolecule, such as a fatty acid, a carbohydrate, or an isoprenoid lipid. Also, provided are methods of tracking a virus in vivo, with an azide-modified biomolecule, such as a fatty acid, a carbohydrate, or an isoprenoid lipid. The azide-modified biomolecules may be combined with a pharmaceutically acceptable excipient to produce a pharmaceutical composition, optionally containing another anti-viral agent and/or a delivery agent, such as a liposome.
    Type: Application
    Filed: July 28, 2011
    Publication date: February 2, 2012
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Brian AGNEW, Upinder SINGH, Scott GRECIAN
  • Publication number: 20120027846
    Abstract: Methods of using azide-modified biomolecules, such as fatty acids, carbohydrates and lipids, to treat a plant, an insect or an animal infected with a virus or to inhibit infectivity of a virus, such as the human immunodeficiency virus, are provided. Also provided are methods of labeling a virus, such as human immunodeficiency virus, with an azide-modified biomolecule, such as a fatty acid, a carbohydrate, or an isoprenoid lipid. Also, provided are methods of tracking a virus in vivo, with an azide-modified biomolecule, such as a fatty acid, a carbohydrate, or an isoprenoid lipid. The azide-modified biomolecules may be combined with a pharmaceutically acceptable excipient to produce a pharmaceutical composition, optionally containing another anti-viral agent and/or a delivery agent, such as a liposome.
    Type: Application
    Filed: July 28, 2011
    Publication date: February 2, 2012
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Brian AGNEW, David GRAHAM, Upinder SINGH, Scott GRECIAN