Patents by Inventor Scott Guelcher

Scott Guelcher has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240050627
    Abstract: Provided are biomaterials and methods useful for promoting large blood vessel growth in a subject. An example biomaterial includes a crosslinked hydrogel and a peptide chemically attached to the hydrogel wherein the peptide comprises an extracellular epitope of a cadherin protein. An example method includes administering to an area of the subject a therapeutically effective amount of the biomaterial, wherein the biomaterial provides artery growth, arteriole growth, a combination thereof in the area of administration.
    Type: Application
    Filed: December 17, 2021
    Publication date: February 15, 2024
    Inventors: Ethan S. Lippmann, Brian O'Grady, David C. Florian, Scott A. Guelcher
  • Publication number: 20220409772
    Abstract: A hybrid composite and method for producing a polymer network are provided. The hybrid composite includes nanocrystalline hydroxyapatite (nHA) and polyurethane. The method for producing a polymer network includes reacting nanocrystalline hydroxyapatite (nHA) particles with lysine derived triisocyanate (LTI) to form a nHA/LTI hybrid prepolymer and reacting the prepolymer with a thioketal (TK) diol to form a nHA/poly(thioketal urethane) (PTKUR) hybrid polymer network.
    Type: Application
    Filed: April 7, 2022
    Publication date: December 29, 2022
    Inventors: Scott A. Guelcher, Sichang Lu, Madison A.P. McGough, Katarzyna J. Zienkiewicz
  • Publication number: 20200323785
    Abstract: A polymeric nanocarrier and method of treating a bone disease are provided. The polymeric nanocarrier includes an amphiphilic copolymer including a hydrophobic block and a hydrophilic block, where the hydrophilic block comprises a random copolymer. The method of treating a bone disease includes administering the polymeric nanocarrier to a subject in need thereof.
    Type: Application
    Filed: April 9, 2020
    Publication date: October 15, 2020
    Inventors: Craig L Duvall, Joseph Paul Vanderburgh, Mukesh K. Gupta, Scott A. Guelcher, Julie A. Rhoades
  • Patent number: 10172956
    Abstract: The presently-disclosed subject matter includes nanoparticles that comprise a plurality of assembled polymers. In some embodiments the polymers comprise a first block that includes hydrophilic monomers, the first block substantially forming an outer shell of the nanoparticle, and a second block that includes cationic monomers and hydrophobic monomers, the second block substantially forming a core of the nanoparticle. In some embodiments a polynucleotide is provided that is bound to the cationic monomers of the nanoparticle. The presently-disclosed subject matter also comprises methods for using the present nanoparticles to include RNAi in a cell as well as methods for making the present nanoparticles.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: January 8, 2019
    Assignee: Vanderbilt University
    Inventors: Craig L. Duvall, Christopher E. Nelson, James Kintzing, Joshua M. Shannon, Mukesh K. Gupta, Scott A. Guelcher, Elizabeth J. Adolph, Jeffrey M. Davidson
  • Publication number: 20180311413
    Abstract: A hybrid composite and method for producing a polymer network are provided. The hybrid composite includes nanocrystalline hydroxyapatite (nHA) and polyurethane. The method for producing a polymer network includes reacting nanocrystalline hydroxyapatite (nHA) particles with lysine derived triisocyanate (LTI) to form a nHA/LTI hybrid prepolymer and reacting the prepolymer with a thioketal (TK) diol to form a nHA/poly(thioketal urethane) (PTKUR) hybrid polymer network.
    Type: Application
    Filed: October 17, 2016
    Publication date: November 1, 2018
    Inventors: Scott A. Guelcher, Sichang Lu, Madison A.P. McGough, Katarzyna L. Zienkiewicz
  • Publication number: 20180280568
    Abstract: A biodegradable scaffold, a low-molecular weight thioketal, and a method of forming a biodegradable scaffold are provided. The biodegradable scaffold includes a thioketal and an isocyanate, where the thioketal is linked to the isocyanate to form the scaffold. The low-molecular weight thioketal includes 2,2-dimethoxypropane and thioglycolic acid, wherein the thioketal includes at least two hydroxyl terminal groups. The method of forming the biodegradable scaffold includes blending a thioketal with an excess isocyanate, forming a quasi-prepolymer, mixing the thioketal, the quasi-prepolymer, and a ceramic, and then adding a catalyst to form the biodegradable scaffold. The thioketal is a low-molecular weight thioketal having at least two hydroxyl terminal groups.
    Type: Application
    Filed: October 14, 2016
    Publication date: October 4, 2018
    Inventors: Scott A. Guelcher, Madison A.P. McEnery, Mukesh K. Gupta, Craig L. Duvall
  • Patent number: 10046086
    Abstract: A biodegradable scaffold, a low-molecular weight thioketal, and a method of forming a biodegradable scaffold are provided. The biodegradable scaffold includes a thioketal and an isocyanate, where the thioketal is linked to the isocyanate to form the scaffold. The low-molecular weight thioketal includes 2,2-dimethoxypropane and thioglycolic acid, wherein the thioketal includes at least two hydroxyl terminal groups. The method of forming the biodegradable scaffold includes blending a thioketal with an excess isocyanate, forming a quasi-prepolymer, mixing the thioketal, the quasi-prepolymer, and a ceramic, and then adding a catalyst to form the biodegradable scaffold. The thioketal is a low-molecular weight thioketal having at least two hydroxyl terminal groups.
    Type: Grant
    Filed: October 11, 2016
    Date of Patent: August 14, 2018
    Assignee: Vanderbilt University
    Inventors: Scott A. Guelcher, Madison McGough, Mukesh K. Gupta, Craig L. Duvall, John Martin, Jon Page
  • Patent number: 9950096
    Abstract: The present invention encompasses the finding that certain treatments (e.g., surface modifications) to particulate materials can provide surprising and unexpected benefits and/or features to composites and/or compositions as described herein. In some embodiments, such benefits and/or features may render particular composites and/or compositions particularly useful in a certain therapeutic context (e.g, for repair of tibial plateau, femoral head, craniofacial, or lateral mandibular body defects). The present invention demonstrates that certain composites and/or compositions wherein the particular material is or comprises defatted bone have surprising and beneficial attributes.
    Type: Grant
    Filed: January 12, 2011
    Date of Patent: April 24, 2018
    Assignee: Vanderbilt University
    Inventors: Scott A. Guelcher, Edna Margarita Prieto, Jerald E. Dumas, Katarzyna Jadwiga Zienkiewicz, Jonathan Page
  • Patent number: 9801946
    Abstract: Embodiments of the present inventions comprise composites of polyurethane(s), osteoconductive matrix, and, optionally, a growth factor. Embodiments further comprise methods of making such composite and uses thereof. The osteoconductive matrix can be a tricalcium phosphate, bioglass, or the like, and can include particles that are surface modified. Growth factors can be provided in powder form, including bone morphogenic proteins such as rhBMP-2. A composition may be moldable and/or injectable. After implantation or injection, a composition may be set to form a porous composite that provides mechanical strength and supports the in-growth of cells.
    Type: Grant
    Filed: April 22, 2013
    Date of Patent: October 31, 2017
    Assignee: Vanderbilt University
    Inventors: Scott A. Guelcher, Jerald Dumas, Edna M. Prieto, Anne Talley, Andrew Harmata, Katarzyna Zienkiewicz
  • Publication number: 20170119924
    Abstract: A biodegradable scaffold, a low-molecular weight thioketal, and a method of forming a biodegradable scaffold are provided. The biodegradable scaffold includes a thioketal and an isocyanate, where the thioketal is linked to the isocyanate to form the scaffold. The low-molecular weight thioketal includes 2,2-dimethoxypropane and thioglycolic acid, wherein the thioketal includes at least two hydroxyl terminal groups. The method of forming the biodegradable scaffold includes blending a thioketal with an excess isocyanate, forming a quasi-prepolymer, mixing the thioketal, the quasi-prepolymer, and a ceramic, and then adding a catalyst to form the biodegradable scaffold. The thioketal is a low-molecular weight thioketal having at least two hydroxyl terminal groups.
    Type: Application
    Filed: October 11, 2016
    Publication date: May 4, 2017
    Inventors: Scott A. Guelcher, Madison A.P. McEnery, Mukesh K. Gupta, Craig L. Duvall, John Martin, Jon Page
  • Patent number: 9463261
    Abstract: The presently-disclosed subject matter includes biodegradable scaffolds. Exemplary biodegradable scaffolds comprise a plurality of polythioketal polymers, and a plurality of polyisocyanates, where at least one polyisocyanate is linked to at least one polymer to form the scaffold. Thus, certain embodiments of scaffolds comprise a cross-linked network of the polythioketal polymers and the polyisocyanates. The presently-disclosed subject matter also includes methods for treating tissue, such as skin or bone tissue, in a subject in need thereof. Treatment methods comprise contacting the tissue with an effective amount of the biodegradable scaffold. Furthermore, the presently-disclosed subject matter includes methods for making the present biodegradable scaffolds.
    Type: Grant
    Filed: September 20, 2013
    Date of Patent: October 11, 2016
    Assignee: Vanderbilt University
    Inventors: Craig L. Duvall, Scott A. Guelcher, Mukesh Kumar Gupta, John Martin, Jonathan Page
  • Patent number: 9333276
    Abstract: Present inventions present composites of bone particles and polyurethane(s), as well as methods of making such composite and uses thereof. A porous composite comprises a plurality of bone particles; and polyurethanes with which the bone particles are combined. To prepare a porous composite, a composition comprise a plurality of bone particles, polyurethane precursors including polyisocyanate prepolymers and polyols, water and catalyst. A composition is either naturally moldable and/or injectable, or it can be made moldable and/or injectable. After implantation or injection, a composition may be set to form a porous composite that provides mechanical strength and supports the in-growth of cells. Inventive composites have the advantage of being able to fill irregularly shape implantation site while at the same time being settable to provide the mechanical strength for most orthopedic applications.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: May 10, 2016
    Assignees: Vanderbilt University, Warsaw Orthopedic, Inc.
    Inventors: Scott A. Guelcher, Subhabrata Bhattacharyya, Katarzyna Jadwiga Zienkiewicz, Shaun A. Tanner, Jerald E. Dumas
  • Publication number: 20150283254
    Abstract: The presently-disclosed subject matter includes nanoparticles that comprise a plurality of assembled polymers. In some embodiments the polymers comprise a first block that includes hydrophilic monomers, the first block substantially forming an outer shell of the nanoparticle, and a second block that includes cationic monomers and hydrophobic monomers, the second block substantially forming a core of the nanoparticle. In some embodiments a polynucleotide is provided that is bound to the cationic monomers of the nanoparticle. The presently-disclosed subject matter also comprises methods for using the present nanoparticles to include RNAi in a cell as well as methods for making the present nanoparticles.
    Type: Application
    Filed: October 28, 2013
    Publication date: October 8, 2015
    Inventors: Craig L. Duvall, Christopher E. Nelson, James Kintzing, Joshua M. Shannon, Mukesh K. Gupta, Scott A. Guelcher, Elizabeth J. Adolph, Jeffrey M. Davidson
  • Publication number: 20150283182
    Abstract: Embodiments of the present inventions comprise composites of bone particles and polyurethane(s), as well as methods of making such composite and uses thereof. Certain embodiments further comprise a growth factor that can be provided in powder form. Growth factors may be bone morphogenic proteins, such as rhBMP-2. A porous composite comprises a plurality of bone particles, polyurethanes with which the bone particles are combined, and at least one growth factor. A composition may be moldable and/or injectable. After implantation or injection, a composition may be set to form a porous composite that provides mechanical strength and supports the in-growth of cells. Inventive composites have the advantage of being able to fill irregularly shape implantation site while at the same time being settable to provide the mechanical strength for most orthopedic applications.
    Type: Application
    Filed: October 24, 2011
    Publication date: October 8, 2015
    Inventors: Scott A. Guelcher, Jerald E. Dumas, Edna Margarita Prieto, Katarzyna Zienkiewicz
  • Publication number: 20150231302
    Abstract: The presently-disclosed subject matter includes biodegradable scaffolds. Exemplary biodegradable scaffolds comprise a plurality of polythioketal polymers, and a plurality of polyisocyanates, where at least one polyisocyanate is linked to at least one polymer to form the scaffold. Thus, certain embodiments of scaffolds comprise a cross-linked network of the polythioketal polymers and the polyisocyanates. The presently-disclosed subject matter also includes methods for treating tissue, such as skin or bone tissue, in a subject in need thereof. Treatment methods comprise contacting the tissue with an effective amount of the biodegradable scaffold. Furthermore, the presently-disclosed subject matter includes methods for making the present biodegradable scaffolds.
    Type: Application
    Filed: September 20, 2013
    Publication date: August 20, 2015
    Applicant: VANDERBILT UNIVERSITY
    Inventors: Craig L. Duvall, Scott A. Guelcher, Mukesh Kumar Gupta, John Martin, Jonathan Page
  • Publication number: 20150182667
    Abstract: Embodiments of the presently-disclosed subject matter provide composites that comprise a tissue graft and a biofilm dispersal agent. The tissue graft can be bone tissue graft, a soft tissue graft, or the like. In specific embodiments the tissue graft is a polyurethane graft and in other embodiments the tissue graft is bone particles, such as demineralized bone matrix. The biofilm dispersal agent can be one or more D-amino acids. The presently-disclosed subject matter further includes methods for treating tissue of a subject that comprise administering the present composites as well as methods for manufacturing the present composites.
    Type: Application
    Filed: August 8, 2013
    Publication date: July 2, 2015
    Inventors: Scott A. Guelcher, Joseph C. Wenke, Carlos C. Sanchez, Jr., Kevin S. Akers, Chad A. Kruger, Edna M. Prieto, Katarzyna Zienkiewicz
  • Publication number: 20150093821
    Abstract: A biodegradable and biocompatible polyurethane composition synthesized by reacting isocyanate groups of at least one multifunctional isocyanate compound with at least one bioactive agent having at least one reactive group —X which is a hydroxyl group (—OH) or an amine group (—NH2). The polyurethane composition is biodegradable within a living organism to biocompatible degradation products including the bioactive agent. Preferably, the released bioactive agent affects at least one of biological activity or chemical activity in the host organism. A biodegradable polyurethane composition includes hard segments and soft segments. Each of the hard segments is preferably derived from a diurea diol or a diester diol and is preferably biodegradable into biomolecule degradation products or into biomolecule degradation products and a biocompatible diol. Another biodegradable polyurethane composition includes hard segments and soft segments.
    Type: Application
    Filed: October 10, 2014
    Publication date: April 2, 2015
    Inventors: Eric J. Beckman, Jeffrey O. Hollinger, Bruce A. Doll, Scott A. Guelcher, Jianying Zhang
  • Publication number: 20130295081
    Abstract: The presently-disclosed subject matter includes polyurethane composites that include tissue component(s), as well as methods of making such composites and uses thereof. The polyurethane component can comprise a polyisocyanate prepolymer and a polyol. The tissue component can be a polysaccharide. Exemplary composites can be moldable and/or injectable, and can cure into a porous composite that provides mechanical strength and/or supports the in-growth of cells. Inventive composites have the advantage of being able to fill irregularly shaped areas, voids, or the like. Exemplary composites can be used for treating wounds.
    Type: Application
    Filed: April 16, 2013
    Publication date: November 7, 2013
    Inventors: Scott A. Guelcher, Andrea Hafeman, Jeffrey Davidson, Lillian M. Nanney, Elizabeth Adolph
  • Patent number: 8552217
    Abstract: The present invention encompasses the finding that improvements can be achieved in manufacture of isocyanates through the use of a substitute for or a precursor of phosgene. Methods and compositions utilized in accordance with the present invention can be useful in situations in which it is difficult to use phosgene, and in particular gaseous phosgene. In some embodiments, a substitute for or a precursor of phosgene used in accordance with the present invention for preparing isocyanates is or comprises diphosgene (ClCO2CCl3).
    Type: Grant
    Filed: February 4, 2011
    Date of Patent: October 8, 2013
    Assignee: Warsaw Orthopedic, Inc.
    Inventors: Subha Bhattacharyya, Scott Guelcher, Damodaragounder Gopal, Marco Burello
  • Publication number: 20130236513
    Abstract: Embodiments of the present inventions comprise composites of polyurethane(s), osteoconductive matrix, and, optionally, a growth factor. Embodiments further comprise methods of making such composite and uses thereof. The osteoconductive matrix can be a tricalcium phosphate, bioglass, or the like, and can include particles that are surface modified. Growth factors can be provided in powder form, including bone morphogenic proteins such as rhBMP-2. A composition may be moldable and/or injectable. After implantation or injection, a composition may be set to form a porous composite that provides mechanical strength and supports the in-growth of cells.
    Type: Application
    Filed: April 22, 2013
    Publication date: September 12, 2013
    Applicant: Vanderbilt University
    Inventors: Scott A. Guelcher, Jerald Dumas, Edna M. Prieto, Kerem Kalpakci, Anne Talley, Andrew Harmata, Katarzyna Zienkiewicz