Patents by Inventor Scott Hauck

Scott Hauck has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10565182
    Abstract: A system is provided that includes a first processor and a second processor. The first processor includes first hardware logic circuitry that performs a Lempel-Ziv-Markov chain algorithm (LZMA) forward pass compression process on a portion of source data to provide first output data. The second processor that performs an LZMA backward pass compression process on the first output data to provide second output data.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: February 18, 2020
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Douglas C. Burger, Scott Hauck
  • Publication number: 20170147624
    Abstract: A system is provided that includes a first processor and a second processor. The first processor includes first hardware logic circuitry that performs a Lempel-Ziv-Markov chain algorithm (LZMA) forward pass compression process on a portion of source data to provide first output data. The second processor that performs an LZMA backward pass compression process on the first output data to provide second output data.
    Type: Application
    Filed: November 23, 2015
    Publication date: May 25, 2017
    Inventors: Douglas C. Burger, Scott Hauck
  • Patent number: 9590655
    Abstract: A method of lossless data compression includes receiving a set of parallel data strings; determining compression hash values for each of the parallel data strings; determining bit matches among portions of each of the parallel data strings based, at least in part, on the compression hash values; selecting among literals and the bit matches for each of the parallel data strings; and applying Huffman encoding to the selected literals or the selected bit matches.
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: March 7, 2017
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Joo-Young Kim, Douglas C. Burger, Jeremy Halden Fowers, Scott A. Hauck
  • Publication number: 20160285473
    Abstract: A method of lossless data compression includes receiving a set of parallel data strings; determining compression hash values for each of the parallel data strings; determining bit matches among portions of each of the parallel data strings based, at least in part, on the compression hash values; selecting among literals and the bit matches for each of the parallel data strings; and applying Huffman encoding to the selected literals or the selected bit matches.
    Type: Application
    Filed: June 12, 2015
    Publication date: September 29, 2016
    Inventors: Joo-Young Kim, Douglas C. Burger, Jeremy Halden Fowers, Scott A. Hauck
  • Patent number: 8309932
    Abstract: A method for estimating the start time of an electronic pulse generated in response to a detected event, for example the start time for pulses received in response to photon detection in positron emission tomography, includes providing a detector that detects an external event and generates an electronic analog pulse signal. A composite reference pulse curve is calculated to represent analog pulse signals generated by the detector. Upon receiving an analog pulse signal, it may be filtered, and then digitized, and normalized based on the area of the digital signal. Using at least one point of the normalized digital pulse signal, the composite reference pulse curve shape is used to estimate the pulse start time.
    Type: Grant
    Filed: August 18, 2011
    Date of Patent: November 13, 2012
    Assignee: University of Washington
    Inventors: Michael Haselman, Robert S. Miyaoka, Thomas K. Lewellen, Scott Hauck
  • Publication number: 20110301918
    Abstract: A method for estimating the start time of an electronic pulse generated in response to a detected event, for example the start time for pulses received in response to photon detection in positron emission tomography, includes providing a detector that detects an external event and generates an electronic analog pulse signal. A composite reference pulse curve is calculated to represent analog pulse signals generated by the detector. Upon receiving an analog pulse signal, it may be filtered, and then digitized, and normalized based on the area of the digital signal. Using at least one point of the normalized digital pulse signal, the composite reference pulse curve shape is used to estimate the pulse start time.
    Type: Application
    Filed: August 18, 2011
    Publication date: December 8, 2011
    Applicant: WASHINGTON, UNIVERSITY OF
    Inventors: Michael Haselman, Robert S. Miyaoka, Thomas K. Lewellen, Scott Hauck
  • Patent number: 8003948
    Abstract: A method for estimating the start time of an electronic pulse generated in response to a detected event, for example the start time for pulses received in response to photon detection in positron emission tomography, includes providing a detector that detects an external event and generates an electronic analog pulse signal. A parameterized ideal curve shape is selected to represent analog pulse signals generated by the detector. Upon receiving an analog pulse signal, it may be filtered, and then digitized, and normalized based on the area of the digital signal. Using at least one point of the normalized digital pulse signal, a curve from the parameterized ideal curve shape is selected, that best represents the received analog pulse signal, and the selected curve is used to estimate the pulse start time.
    Type: Grant
    Filed: November 3, 2008
    Date of Patent: August 23, 2011
    Assignee: University of Washington
    Inventors: Michael Haselman, Robert S. Miyaoka, Thomas K. Lewellen, Scott Hauck
  • Publication number: 20090224158
    Abstract: A method for estimating the start time of an electronic pulse generated in response to a detected event, for example the start time for pulses received in response to photon detection in positron emission tomography, includes providing a detector that detects an external event and generates an electronic analog pulse signal. A parameterized ideal curve shape is selected to represent analog pulse signals generated by the detector. Upon receiving an analog pulse signal, it may be filtered, and then digitized, and normalized based on the area of the digital signal. Using at least one point of the normalized digital pulse signal, a curve from the parameterized ideal curve shape is selected, that best represents the received analog pulse signal, and the selected curve is used to estimate the pulse start time.
    Type: Application
    Filed: November 3, 2008
    Publication date: September 10, 2009
    Applicant: WASHINGTON, UNIVERSITY OF
    Inventors: Michael Haselman, Robert S. Miyaoka, Thomas K. Lewellen, Scott Hauck
  • Patent number: 6977932
    Abstract: Network tunneling methods and apparatus utilizing flow state information are provided. A router includes an ingress linecard having logic that selects a particular network tunnel for a received micro-flow. The ingress linecard further includes logic that selects a particular egress linecard and a particular port to utilize for transmitting the micro-flow. The router also includes an aggregate flow block that includes tunnel specific information for the selected network tunnel. The tunnel specific information includes but is not limited to label action and outgoing label(s), Layer 2 tunneling action or Layer 3 actions. The aggregate flow block further includes statistics for the selected network tunnel. In addition, the router includes a flow block having flow state information for the micro-flow. The flow block also includes an identifier that associates the flow block with the aggregate flow block.
    Type: Grant
    Filed: January 16, 2002
    Date of Patent: December 20, 2005
    Assignee: Caspian Networks, Inc.
    Inventor: Scott Hauck
  • Patent number: 5367209
    Abstract: A field programmable gate array (FPGA) including both routing and logic blocks (RLBs) and routing and arbiter blocks (RABs) is disclosed. The RABs are periodically placed throughout the FPGA and operate either to arbitrate the arrival of simultaneous signals or to synchronize simultaneous signals. In addition, each of the RLBs are capable of operating in accordance with two clock signals and an asynchronous initialization. The combination of the RLBs and RABs allow the FPGA to operate synchronously and asynchronously.
    Type: Grant
    Filed: April 30, 1993
    Date of Patent: November 22, 1994
    Inventors: Scott A. Hauck, Gaetano Borriello, Steven M. Burns, William H. C. Ebeling