Patents by Inventor Scott J. MacGregor

Scott J. MacGregor has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11951217
    Abstract: Disclosed herein are methods and devices for the inactivation of pathogens (e.g., bacteria, viruses, etc.) in ex vivo stored blood products, such as plasma and/or platelets, by means of directing visible light radiation from an illuminating device into blood product storage containers in order to achieve effective pathogen inactivation without the presence of an added photosensitising agent in the blood product. An exemplary apparatus includes a control unit that operates a light source that emits light in the wavelength region of about 380-500 nm which is directed onto blood product storage bags at sufficient intensity to penetrate the bag material and the opaque blood product therein in order to inactivate pathogens in the blood product but at dose levels that cause no significant detrimental effects on the blood product.
    Type: Grant
    Filed: May 20, 2022
    Date of Patent: April 9, 2024
    Assignees: The United States of America, as represented by the Secretary, Department of Health and Human Services, University of Strathelyde
    Inventors: Chintamani Atreya, Michelle Maclean, John G. Anderson, Scott J. MacGregor
  • Publication number: 20220273834
    Abstract: Disclosed herein are methods and devices for the inactivation of pathogens (e.g., bacteria, viruses, etc.) in ex vivo stored blood products, such as plasma and/or platelets, by means of directing visible light radiation from an illuminating device into blood product storage containers in order to achieve effective pathogen inactivation without the presence of an added photosensitising agent in the blood product. An exemplary apparatus includes a control unit that operates a light source that emits light in the wavelength region of about 380-500 nm which is directed onto blood product storage bags at sufficient intensity to penetrate the bag material and the opaque blood product therein in order to inactivate pathogens in the blood product but at dose levels that cause no significant detrimental effects on the blood product.
    Type: Application
    Filed: May 20, 2022
    Publication date: September 1, 2022
    Applicants: The United States of America, as represented by the Secretary, Department of Health and Human Servic, The University of Strathclyde
    Inventors: Chintamani Atreya, Michelle Maclean, John G. Anderson, Scott J. MacGregor
  • Publication number: 20190070323
    Abstract: Disclosed herein are methods and devices for the inactivation of pathogens (e.g., bacteria, viruses, etc.) in ex vivo stored blood products, such as plasma and/or platelets, by means of directing visible light radiation from an illuminating device into blood product storage containers in order to achieve effective pathogen inactivation without the presence of an added photosensitising agent in the blood product. An exemplary apparatus includes a control unit that operates a light source that emits light in the wavelength region of about 380-500 nm which is directed onto blood product storage bags at sufficient intensity to penetrate the bag material and the opaque blood product therein in order to inactivate pathogens in the blood product but at dose levels that cause no significant detrimental effects on the blood product.
    Type: Application
    Filed: September 29, 2016
    Publication date: March 7, 2019
    Applicants: The US of America, as represented by the Secretary Dept. of Health and Human Servics, The University of Strathclyde
    Inventors: Chintamani Atreya, Michelle Maclean, John G. Anderson, Scott J. MacGregor
  • Patent number: 8257050
    Abstract: Peening provides compression of component surfaces in order to create residual surface compressions to resist crack propagation in components such as aerofoils. Previously peening techniques have had problems with respect to achieving adequate treatment depths, speed of treatment and with respect to effectiveness. By the present method arrangement an electrical conductor in the form of a wire is subject to electrical pulses to cause evaporation and subsequent breakdown with high power ultrasound (HPU) propagation in a volume of dielectric fluid towards a component and so peening. The electrical conductor ensures that there is limited possibility of electrical discharge to the component surface while the positioning of the wire relative to the surface can be adjusted to achieve best effect particularly if reflector devices are utilized to concentrate (HPU) pulse presentation to the component.
    Type: Grant
    Filed: August 30, 2007
    Date of Patent: September 4, 2012
    Assignee: Rolls-Royce PLC
    Inventors: Igor Timoshkin, Scott J. MacGregor
  • Publication number: 20100008786
    Abstract: Peening provides compression of component (6, 46, 56) surfaces in order to create residual surface compressions to resist crack propagation in components such as aerofoils. Previously peening techniques have had problems with respect to achieving adequate treatment depths, speed of treatment and with respect to effectiveness. By the present method arrangement an electrical conductor (1, 41, 51) in the form of a wire is subject to electrical pulses to cause evaporation and subsequent breakdown with high power ultrasound (HPU) propagation in a volume of dielectric fluid towards a component and so peening. The electrical conductor (1, 41, 51) ensures that there is limited possibility of electrical discharge to the component (6, 46, 51) surface whilst the positioning of the wire (1, 41, 51) relative to the surface can be adjusted to achieve best effect particularly if reflector (5) devices are utilised to concentrate (HPU) pulse presentation to the component (6, 46, 56).
    Type: Application
    Filed: August 30, 2007
    Publication date: January 14, 2010
    Applicant: ROLLS-ROYCE PLC
    Inventors: Igor Timoshkin, Scott J. MacGregor