Patents by Inventor Scott J. Vader

Scott J. Vader has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11886759
    Abstract: A method operates a three-dimensional (3D) metal object manufacturing system to compensate for displacement errors that occur during object formation. In the method, image data of a metal object being formed by the 3D metal object manufacturing system is generated prior to completion of the metal object and compared to original 3D object design data of the object to identify one or more displacement errors. For the displacement errors outside a predetermined difference range, the method modifies machine-ready instructions for forming metal object layers not yet formed to compensate for the identified displacement errors and operates the 3D metal object manufacturing system using the modified machine-ready instructions.
    Type: Grant
    Filed: October 1, 2019
    Date of Patent: January 30, 2024
    Assignee: Xerox Corporation
    Inventors: David A. Mantell, Christopher T. Chungbin, Daniel R. Cormier, Scott J. Vader, Zachary S. Vader, Viktor Sukhotskiy, Raja Bala, Walter Hsiao
  • Patent number: 11607727
    Abstract: An ejector of liquid material to form spherical particles includes a crucible for retaining liquid material, an orifice area defining at least one orifice, and an actuator responsive to a voltage signal for causing material to be ejected from the crucible through the orifice. A method comprises applying a voltage signal of a first type and a second type to the actuator, causing a material droplet of a first size and a second size to be ejected through the orifice. Alternately or in addition, the orifice area defines a first orifice having a first diameter and a second orifice having a second diameter different from the first diameter, whereby a signal causes a material droplet of a first size to be ejected through the first orifice and a material droplet of a second size to be ejected through the second orifice.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: March 21, 2023
    Assignee: Xerox Corporation
    Inventors: Scott J Vader, Zachary S Vader, Chu-Heng Liu
  • Patent number: 11565475
    Abstract: A method operates a three-dimensional (3D) metal object manufacturing system to compensate for errors that occur during object formation. In the method, thermal image data and dimensional image data of a metal object being formed by the 3D metal object manufacturing system is generated prior to completion of the metal object. Thermal conditions are identified from these data and compared to predetermined ranges corresponding to the identified thermal conditions to identify one or more errors. For identified errors outside a corresponding predetermined difference range, the method performs an error compensation technique. The error compensation includes modification of a surface data model, modification of machine-ready instructions, or operation of a subtractive device.
    Type: Grant
    Filed: April 10, 2020
    Date of Patent: January 31, 2023
    Assignee: Xerox Corporation
    Inventors: David A. Mantell, Christopher T. Chungbin, Chu-Heng Liu, Scott J. Vader, Zachary S. Vader, Viktor Sukhotskiy, Denis Cormier, Kareem Tawil
  • Patent number: 11440321
    Abstract: A jetting assembly that can be used to print a high-temperature print material such as a metal or metal alloy, an aqueous ink, or another material, includes an actuator for heating a gas such as a non-volatile gas within a gas cavity. The actuator rapidly heats the gas within the gas cavity, which rapidly increases a volume of the gas, thereby applying a pressure to the print material within an expansion channel that is in fluid communication with the gas cavity. In turn, the print material within the expansion channel applies a pressure to the print material within a nozzle bore, which forces a drop of the print material from a nozzle. The jetting assembly further includes a supply inlet that supplies the print material to the expansion chamber and the nozzle bore, for example, from a reservoir.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: September 13, 2022
    Assignee: XEROX CORPORATION
    Inventors: Christopher T. Chungbin, Scott J. Vader, Zachary S. Vader, Kareem N. Tawil, William R. Harris, David A. Mantell, Viktor Sukhotskiy
  • Patent number: 11235382
    Abstract: A method for printing a structure, the structure including a plurality of pillars. The method for printing can include ejecting only a first drop of a print material such as a liquid metal sequentially at each of a plurality of pillar locations, then ejecting only a second drop of the print material sequentially onto the first drop at each of the plurality of print locations. Additional drops can be ejected at two or more of the pillar locations to form the plurality of pillars. Ejecting only a first drop at each pillar location allows the first drop to cure (i.e., cool or dry) before ejecting the second drop. The printer continues printing while the drops cure, thus improving processing efficiency and increasing production throughput.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: February 1, 2022
    Assignees: XEROX CORPORATION, PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: David A. Mantell, Daniel R. Cormier, Christopher T. Chungbin, Zachary S. Vader, Viktor Sukhotskiy, Scott J. Vader, David Tilley
  • Publication number: 20210178763
    Abstract: A jetting assembly that can be used to print a high-temperature print material such as a metal or metal alloy, an aqueous ink, or another material, includes an actuator for heating a gas such as a non-volatile gas within a gas cavity. The actuator rapidly heats the gas within the gas cavity, which rapidly increases a volume of the gas, thereby applying a pressure to the print material within an expansion channel that is in fluid communication with the gas cavity. In turn, the print material within the expansion channel applies a pressure to the print material within a nozzle bore, which forces a drop of the print material from a nozzle. The jetting assembly further includes a supply inlet that supplies the print material to the expansion chamber and the nozzle bore, for example, from a reservoir.
    Type: Application
    Filed: December 12, 2019
    Publication date: June 17, 2021
    Applicant: XEROX CORPORATION
    Inventors: Christopher T. Chungbin, Scott J. Vader, Zachary S. Vader, Kareem N. Tawil, William R. Harris, David A. Mantell, Viktor Sukhotskiy
  • Publication number: 20210121947
    Abstract: A method for printing a structure, the structure including a plurality of pillars. The method for printing can include ejecting only a first drop of a print material such as a liquid metal sequentially at each of a plurality of pillar locations, then ejecting only a second drop of the print material sequentially onto the first drop at each of the plurality of print locations. Additional drops can be ejected at two or more of the pillar locations to form the plurality of pillars. Ejecting only a first drop at each pillar location allows the first drop to cure (i.e., cool or dry) before ejecting the second drop. The printer continues printing while the drops cure, thus improving processing efficiency and increasing production throughput.
    Type: Application
    Filed: October 28, 2019
    Publication date: April 29, 2021
    Applicants: XEROX CORPORATION, Palo Alto Research Center Incorporated
    Inventors: David A. Mantell, Daniel R. Cormier, Christopher T. Chungbin, Zachary S. Vader, Viktor Sukhotskiy, Scott J. Vader, David Tilley
  • Publication number: 20210096537
    Abstract: A method operates a three-dimensional (3D) metal object manufacturing system to compensate for displacement errors that occur during object formation. In the method, image data of a metal object being formed by the 3D metal object manufacturing system is generated prior to completion of the metal object and compared to original 3D object design data of the object to identify one or more displacement errors. For the displacement errors outside a predetermined difference range, the method modifies machine-ready instructions for forming metal object layers not yet formed to compensate for the identified displacement errors and operates the 3D metal object manufacturing system using the modified machine-ready instructions.
    Type: Application
    Filed: October 1, 2019
    Publication date: April 1, 2021
    Inventors: David A. Mantell, Christopher T. Chungbin, Daniel R. Cormier, Scott J. Vader, Zachary S. Vader, Viktor Sukhotskiy, Raja Bala, Walter Hsiao
  • Publication number: 20200324486
    Abstract: A method operates a three-dimensional (3D) metal object manufacturing system to compensate for errors that occur during object formation. In the method, thermal image data and dimensional image data of a metal object being formed by the 3D metal object manufacturing system is generated prior to completion of the metal object. Thermal conditions are identified from these data and compared to predetermined ranges corresponding to the identified thermal conditions to identify one or more errors. For identified errors outside a corresponding predetermined difference range, the method performs an error compensation technique. The error compensation includes modification of a surface data model, modification of machine-ready instructions, or operation of a subtractive device.
    Type: Application
    Filed: April 10, 2020
    Publication date: October 15, 2020
    Inventors: David A. Mantell, Christopher T. Chungbin, Chu-Heng Liu, Scott J. Vader, Zachary S. Vader, Viktor Sukhotskiy, Denis Cormier, Kareem Tawil
  • Publication number: 20190351488
    Abstract: An ejector of liquid material to form spherical particles includes a crucible for retaining liquid material, an orifice area defining at least one orifice, and an actuator responsive to a voltage signal for causing material to be ejected from the crucible through the orifice. A method comprises applying a voltage signal of a first type and a second type to the actuator, causing a material droplet of a first size and a second size to be ejected through the orifice. Alternately or in addition, the orifice area defines a first orifice having a first diameter and a second orifice having a second diameter different from the first diameter, whereby a signal causes a material droplet of a first size to be ejected through the first orifice and a material droplet of a second size to be ejected through the second orifice.
    Type: Application
    Filed: May 15, 2019
    Publication date: November 21, 2019
    Inventors: Scott J. Vader, Zachary S. Vader, CHU-HENG LIU
  • Patent number: 8217755
    Abstract: Doors of a vehicle, such as a delivery vehicle, are controlled based on user inputs. A user may input a vehicle exit mode and stop the vehicle. When an exit mode has been input and the stopping of the vehicle has been sensed, an exit door of the vehicle is opened, with the door being selected based upon said exit mode.
    Type: Grant
    Filed: September 23, 2008
    Date of Patent: July 10, 2012
    Assignee: Unicell Limited
    Inventors: Roger J. Martin, Mark S. Mull, Richard J. Hellinga, Chris K. Derbecker, Mike A. G. Johnson, Ray J. Minato, Markus A. Hetzler, Scott J. Vader
  • Publication number: 20100073131
    Abstract: Doors of a vehicle, such as a delivery vehicle, are controlled based on user inputs. A user may input a vehicle exit mode and stop the vehicle. When an exit mode has been input and the stopping of the vehicle has been sensed, an exit door of the vehicle is opened, with the door being selected based upon said exit mode.
    Type: Application
    Filed: September 23, 2008
    Publication date: March 25, 2010
    Inventors: Roger J. Martin, Mark S. Mull, Richard J. Hellinga, Chris K. Derbecker, Mike A.G. Johnson, Ray J. Minato, Markus A. Hetzler, Scott J. Vader
  • Patent number: 7651153
    Abstract: A vehicle has a body and at least two trailing arm suspensions, one proximate each side of the body. Each trailing arm suspension has a swing arm pivotably mounted at one end to the body and a fluid suspension extending between the swing arm and the body. A wheel is rotatably mounted to a free end of each swing arm. A power plant is provided for powering each wheel and a control system is provided for controlling a volume of fluid in each fluid suspension. The vehicle may have a longitudinally extending body with a sliding side door riding along a track configured such that said door has an open position extending transversely of said body. The vehicle may have a monocoque body with at least substantially planar sides and at least one parcel shelf extending along an inside of, and attached to, each of the sides for stiffening the sides and resisting torsion.
    Type: Grant
    Filed: July 18, 2006
    Date of Patent: January 26, 2010
    Assignee: Unicell Limited
    Inventors: Roger Martin, Scott J. Vader
  • Publication number: 20080129446
    Abstract: A system for hands-free vehicle door operation can selectively open a vehicle door on the approach of an operator. Thus, for example, with this system, a rear loading door of a delivery vehicle may open when the operator approaches so that the operator may enter the cargo bay when both hands are busy managing a load.
    Type: Application
    Filed: December 4, 2006
    Publication date: June 5, 2008
    Inventor: Scott J. Vader
  • Publication number: 20080018064
    Abstract: A vehicle has a body and at least two trailing arm suspensions, one proximate each side of the body. Each trailing arm suspension has a swing arm pivotably mounted at one end to the body and a fluid suspension extending between the swing arm and the body. A wheel is rotatably mounted to a free end of each swing arm. A power plant is provided for powering each wheel and a control system is provided for controlling a volume of fluid in each fluid suspension. The vehicle may have a longitudinally extending body with a sliding side door riding along a track configured such that said door has an open position extending transversely of said body. The vehicle may have a monocoque body with at least substantially planar sides and at least one parcel shelf extending along an inside of, and attached to, each of the sides for stiffening the sides and resisting torsion.
    Type: Application
    Filed: July 18, 2006
    Publication date: January 24, 2008
    Inventors: Roger Martin, Scott J. Vader
  • Patent number: 6386613
    Abstract: A four bar link is provided between a walled cargo area of a truck and a rigid rear cargo door. The effective length of the lower link of the four bar linkage is longer than that of the upper link such that the motion of the door is generally up and over the top of the truck body. An eccentric cam is joined to the upper link with a tensioned spring extending around the cam such that the spring slackens as the door opens. The cam is configured so that, as the door is opened, the spring slackens more slowly initially then more quickly. This allows the door to be moved initially mostly outwardly before moving significantly upwardly and still be effectively counterbalanced throughout its motion.
    Type: Grant
    Filed: September 26, 2000
    Date of Patent: May 14, 2002
    Assignee: Unicell Limited
    Inventor: Scott J. Vader
  • Patent number: 4687428
    Abstract: A body manufacturing system for manufacturing bodies for vans, trailers, trucks and the like comprises; a molding station, a glass fibre applicator, a longitudinal guide associated with each mold for guiding the glass fibre applicator along the length of each mold, a transfer device adapted to support the applicator and transport it along said guide path from one mold to another, an insert locating device for inserting side wall, end wall and roof inserts into the molds, an extraction device for extracting the molded body from the mold in which it is formed, a trimming station, a transporter for transporting the molded bodies from the mold in which they are formed to said trimming station, trimming devices in said trimming station for trimming said body to the required proportions and contour, a floor locating system for locating a floor in the upwardly open end of the body located in the trimming station to form a finished body and a righting mechanism for supporting the molded body and operable to turn it r
    Type: Grant
    Filed: October 22, 1985
    Date of Patent: August 18, 1987
    Assignee: Unicell Limited
    Inventors: Roger J. Martin, William C. McKee, Scott J. Vader, Frederick C. Seymour
  • Patent number: D445068
    Type: Grant
    Filed: September 27, 2000
    Date of Patent: July 17, 2001
    Assignee: Unicell Limited
    Inventors: Roger Martin, Scott J. Vader, Karel Caslavsky, Davide Tonizzo
  • Patent number: D445747
    Type: Grant
    Filed: September 27, 2000
    Date of Patent: July 31, 2001
    Assignee: Unicell Limited
    Inventors: Roger Martin, Scott J. Vader, Karel Caslavsky, Davide Tonizzo