Patents by Inventor Scott Kenningley

Scott Kenningley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11280292
    Abstract: The invention relates to a method for producing an engine component, in particular a piston for an internal combustion engine, wherein an aluminum alloy is cast in the gravity die casting process and wherein the aluminum alloy has 7 to <14.5 wt % silicon, >1.2 to ?4 wt % nickel, >3.7 to <10 wt % copper, <1 wt % cobalt, 0.1 to 1.5 wt % magnesium, 0.1 to ?0.7 wt % iron, 0.1 to ?0.7 wt % manganese, >0.1 to <0.5 wt % zirconium, ?0.1 to ?0.3 wt % vanadium, 0.05 to 0.5 wt % titanium, and 0.004 to ?0.05 wt % phosphorus as alloying elements and aluminum and unavoidable contaminants as the remainder. The aluminum alloy can optionally comprise beryllium, wherein the calcium content is limited to a low level.
    Type: Grant
    Filed: May 11, 2015
    Date of Patent: March 22, 2022
    Assignee: Federal-Mogul Nurnberg GmbH
    Inventors: Roman Morgenstern, Stephan Silvio, Scott Kenningley, Philipp Koch, Isabella Sobota, Klaus Lades, Martin Popp, Rainer Weiss, Robert Willard
  • Patent number: 10443536
    Abstract: A piston capable of withstanding high temperatures and extreme conditions of a combustion chamber of an internal combustion engine and manufactured with reduced costs is provided. The method of manufacturing the piston includes casting or forging the bulk of the piston as a single-piece with an open cooling gallery from an economical first material, such as steel, cast iron, or aluminum. The method further includes forming a portion of a combustion bowl surface, which is a small area of the piston directly exposed to the combustion chamber, from a second material by additive machining. The second material has a higher thermal conductivity and higher resistance to oxidation, erosion, and oil coking, compared to the first material. The additive machining process is efficient and creates little waste, which further reduces production costs.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: October 15, 2019
    Assignee: Tenneco Inc.
    Inventors: Ross Evers, Scott Kenningley, Wolfram Cromme
  • Patent number: 10189080
    Abstract: A method for producing an engine component, more particularly a piston for an internal combustion engine, in which an aluminum alloy is cast using the gravity die casting method is provided. The aluminum alloy comprises: 9 to ?10.5% by weight silicon, >2.0 to <3.5% by weight nickel, >3.7 to 5.2% by weight copper, <1% by weight cobalt, 0.5 to 1.5% by weight magnesium, 0.1 to 0.7% by weight iron, 0.1 to 0.4% by weight manganese, >0.1 to <0.2% by weight zirconium, >0.1 to <0.2% by weight vanadium, 0.05 to <0.2% by weight titanium, 0.004 to 0.008% by weight phosphorus, with aluminum and unavoidable impurities constituting the rest. An engine component, in particular a piston, wherein the engine component consists, at least partially, of the aluminum alloy, and the use of an aluminum alloy to produce the engine component, is also provided.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: January 29, 2019
    Assignee: Federal-Mogul Nurnberg
    Inventors: Roman Morgenstern, Klaus Lades, Scott Kenningley, Philipp Koch, Robert Willard, Rainer Weiss, Isabella Sobota, Martin Popp
  • Patent number: 10022788
    Abstract: A method is described for producing an engine component, more particularly a piston for an internal combustion engine, in which an aluminium alloy is cast using the gravity die casting method and wherein the aluminium alloy comprises the following alloy elements: 9 to ?10.5% by weight silicon, >2.0 to <3.5% by weight nickel, >3.7 to 5.2% by weight copper, <1% by weight cobalt, 0.5 to 1.5% by weight magnesium, 0.1 to 0.7% by weight iron, 0.1 to 0.4% by weight manganese, >0.1 to <0.2% by weight zirconium, >0.1 to <0.2% by weight vanadium, 0.05 to <0.2% by weight titanium, 0.004 to 0.008% by weight phosphorus, wherein said aluminium alloy further comprises aluminium and unavoidable impurities.
    Type: Grant
    Filed: November 14, 2013
    Date of Patent: July 17, 2018
    Assignee: Federal-Mogul Nurnberg GmbH
    Inventors: Roman Morgenstern, Klaus Lades, Scott Kenningley, Philipp Koch, Robert Willard, Rainer Weiss, Isabella Sobota, Martin Popp
  • Publication number: 20180093322
    Abstract: A method for producing an engine component, more particularly a piston for an internal combustion engine, in which an aluminium alloy is cast using the gravity die casting method is provided. The aluminium alloy comprises: 9 to ?10.5% by weight silicon, >2.0 to <3.5% by weight nickel, >3.7 to 5.2% by weight copper, <1% by weight cobalt, 0.5 to 1.5% by weight magnesium, 0.1 to 0.7% by weight iron, 0.1 to 0.4% by weight manganese, >0.1 to <0.2% by weight zirconium, >0.1 to <0.2% by weight vanadium, 0.05 to <0.2% by weight titanium, 0.004 to 0.008% by weight phosphorus, with aluminium and unavoidable impurities constituting the rest. An engine component, in particular a piston, wherein the engine component consists, at least partially, of the aluminium alloy, and the use of an aluminium alloy to produce the engine component, is also provided.
    Type: Application
    Filed: December 5, 2017
    Publication date: April 5, 2018
    Inventors: Roman Morgenstern, Klaus Lades, Scott Kenningley, Philipp Koch, Robert Willard, Rainer Weiss, Isabella Sobota, Martin Popp
  • Publication number: 20180066603
    Abstract: A piston capable of withstanding high temperatures and extreme conditions of a combustion chamber of an internal combustion engine and manufactured with reduced costs is provided. The method of manufacturing the piston includes casting or forging the bulk of the piston as a single-piece with an open cooling gallery from an economical first material, such as steel, cast iron, or aluminum. The method further includes forming a portion of a combustion bowl surface, which is a small area of the piston directly exposed to the combustion chamber, from a second material by additive machining. The second material has a higher thermal conductivity and higher resistance to oxidation, erosion, and oil coking, compared to the first material. The additive machining process is efficient and creates little waste, which further reduces production costs.
    Type: Application
    Filed: September 18, 2017
    Publication date: March 8, 2018
    Inventors: ROSS EVERS, SCOTT KENNINGLEY, WOLFRAM CROMME
  • Patent number: 9765727
    Abstract: A piston capable of withstanding high temperatures and extreme conditions of a combustion chamber of an internal combustion engine and manufactured with reduced costs is provided. The method of manufacturing the piston includes casting or forging the bulk of the piston as a single-piece with an open cooling gallery from an economical first material, such as steel, cast iron, or aluminum. The method further includes forming a portion of a combustion bowl surface, which is a small area of the piston directly exposed to the combustion chamber, from a second material by additive machining. The second material has a higher thermal conductivity and higher resistance to oxidation, erosion, and oil coking, compared to the first material. The additive machining process is efficient and creates little waste, which further reduces production costs.
    Type: Grant
    Filed: March 2, 2015
    Date of Patent: September 19, 2017
    Assignee: Federal-Mogul LLC
    Inventors: Ross Evers, Scott Kenningley, Wolfram Cromme
  • Publication number: 20170226957
    Abstract: The invention relates to a method for producing an engine component, in particular a piston for an internal combustion engine, wherein an aluminum alloy is cast in the gravity die casting process and wherein the aluminum alloy has 7 to <14.5 wt % silicon, >1.2 to ?4 wt % nickel, >3.7 to <10 wt % copper, <1 wt % cobalt, 0.1 to 1.5 wt % magnesium, 0.1 to ?0.7 wt % iron, 0.1 to ?0.7 wt % manganese, >0.1 to <0.5 wt % zirconium, ?0.1 to ?0.3 wt % vanadium, 0.05 to 0.5 wt % titanium, and 0.004 to ?0.05 wt % phosphorus as alloying elements and aluminum and unavoidable contaminants as the remainder. The aluminum alloy can optionally comprise beryllium, wherein the calcium content is limited to a low level.
    Type: Application
    Filed: May 11, 2015
    Publication date: August 10, 2017
    Inventors: ROMAN MORGENSTERN, STEPHAN SILVIO, SCOTT KENNINGLEY, PHILIPP KOCH, ISABELLA SOBOTA, KLAUS LADES, MARTIN POPP, RAINER WEISS, ROBERT WILLARD
  • Publication number: 20160271687
    Abstract: A method is described for producing an engine component, more particularly a piston for an internal combustion engine, in which an aluminium alloy is cast using the gravity die casting method and wherein the aluminium alloy comprises the following alloy elements: 9 to ?10.5% by weight silicon, >2.0 to <3.5% by weight nickel, >3.7 to 5.2% by weight copper, <1% by weight cobalt, 0.5 to 1.5% by weight magnesium, 0.1 to 0.7% by weight iron, 0.1 to 0.4% by weight manganese, >0.1 to <0.2% by weight zirconium, >0.1 to <0.2% by weight vanadium, 0.05 to <0.2% by weight titanium, 0.004 to 0.008% by weight phosphorus, wherein said aluminium alloy further comprises aluminium and unavoidable impurities.
    Type: Application
    Filed: November 14, 2013
    Publication date: September 22, 2016
    Inventors: ROMAN MORGENSTERN, KLAUS LADES, SCOTT KENNINGLEY, PHILIPP KOCH, ROBERT WILLARD, RAINER WEISS, ISABELLA SOBOTA, MARTIN POPP
  • Publication number: 20150247474
    Abstract: A piston capable of withstanding high temperatures and extreme conditions of a combustion chamber of an internal combustion engine and manufactured with reduced costs is provided. The method of manufacturing the piston includes casting or forging the bulk of the piston as a single-piece with an open cooling gallery from an economical first material, such as steel, cast iron, or aluminum. The method further includes forming a portion of a combustion bowl surface, which is a small area of the piston directly exposed to the combustion chamber, from a second material by additive machining. The second material has a higher thermal conductivity and higher resistance to oxidation, erosion, and oil coking, compared to the first material. The additive machining process is efficient and creates little waste, which further reduces production costs.
    Type: Application
    Filed: March 2, 2015
    Publication date: September 3, 2015
    Inventors: Ross Evers, Scott Kenningley, Wolfram Cromme